Nanowire heterostructures play a crucial role in nanoscale electronics, i.e., one-dimensional electronics derives benefits from the growth of heterostructures along the nanowire axis. We use first-principles plane-wave calculations within density functional theory with the localized density approximation (LDA) to get information about the structural and electronic properties of bare and hydrogen passivated GaAs/AlAs nanowire heterostructures. We also take into account the reconstruction of the nanowire surfaces. Modeled nanowire heterostructures are constructed using bulk atomic positions along [001] and [111] direction of zinc-blende structures and cutting out wires from this GaAs/AlAs heterostructure crystal with a diameter of 1 nm. We study for the effects of the surface passivation on the band gap and the band offsets for the planar GaAs/AlAs bulk heterostructure system and GaAs/AlAs nanowire heterostructure system. It is possible to control the potential that carriers feel in semiconductor heterostructures. For the planar lattice-matched heterostructures, the macroscopic average of potential of the two materials is constant far from the interface and there is a discontinuity at the interface depending on the composition of the heterostructure. In order to obtain the valence band offset in the heterostructure system, the shift in the macroscopic potential at the interface and the difference between the valence band maximum values of the two constituents must be added. In nanoscale heterostructures, the potential profile presents a more complex picture. The results indicate that while the discontinuity remains close to the planar limit right at the interface, there are fluctuations on the average potential profile beyond the interface developed by the inhomogeneous surface termination, that is, there are variations of the band edges beyond the interface.
We report a first-principles study of the electronic properties of surface dangling-bond (SDB) states in hydrogen passivated GaAs/AlAs nanowire heterostructures with a diameter of 1 nm, where the SDB is defined as the defect due to an incomplete passivation of a surface atom. The charge transition levels of SDB states serve as a common energy reference level, such that charge transition level value for group III and V atoms is a constant value and a periodic table atomic property.
We have carried out first-principles electronic structure and total energy calculations of aluminum nanowires for a series of different diameters ranging from 3 Angtrom-10 Angstrom, which is cut out from a slab of ideal bulk structure along the [001] direction. First-principles calculations of aluminum nanowires have been carried out within the density-functional theory. We use the norm-conserving pseudopotentials that are shown to yield successful results for ultrathin nanowire regime. Our results show that the number of bands crossing the Fermi level decreases with decreasing wire diameter and all wires studied are metallic.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614634/index.pdf |
Date | 01 September 2012 |
Creators | Senozan, Selma |
Contributors | Tomak, Mehmet |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0022 seconds