Return to search

Endocavitary applicator of therapeutic ultrasound integrated with RF receiver coil for high resolution MRI-controlled thermal therapy

This thesis presents technical and methodological developments aiming tooffer a viable alternative for the treatment of digestive cancers (rectum and esophagus). Compared to the standard methods of therapy, the high intensity contact ultrasound guided by MRI is a less invasive approach. MRI offers 2 advantages: good spatial resolution, and real-time temperature control. This treatment method requires efficacy and safety. Three prototypes of RF coil integrated with ultrasound transducers were built in order to increase the spatial and temporal resolution ofthe MR images, and the accuracy of the temperature measurement. The integrated coils showed a better sensitivity compared to a standard extracorporeal coil. Anatomical (voxel 0.4x0.4x5 mm3)and thermometry (voxel 0.75x0.75x8 mm3, 2s/image) high resolution MR images were acquired in-vivo. The temperature was measured, within a radius of 20 mm from the balloon, with a standard deviation <1°C. The flow artifacts caused by the water circulating inside the cooling balloon could be shifted out of the region of interest. The temperature evolution was controlled automatically, at different depths, with one control point per beam. The controller showed a good accuracy during in-vivo experiments (standard deviation less than 5%). The phased-arrayultra sound transducer permits the successive activation of multiple beams during the same dynamic of sonication. Simulations were conducted in order to offer an optimal treatment planning for a defined tumor. A new design of ultrasound transducer with 256 elements with revolution symmetry, based on a natural geometrical focalization, was proposed.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00692346
Date15 December 2009
CreatorsRata, Mihaela
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0048 seconds