Konventionelle Wärmedämmschichtensysteme bestehen aus einer Yttriumoxid-stabilisierten Zirkoniumdioxid-Deckschicht auf einer MCrAIY Haftschicht; wobei M für Co, Ni oder CoNi steht. Während der Nutzung bildet sich durch die Kombination von Wärme und Sauerstoff die Reaktionszone in der BC/TC-Grenzfläche. Diese Reaktionszone besteht aus thermisch wachsenden Übergangsmetalloxiden.
In dieser Dissertation wurde das Phänomen der Bildung von TGO in TBC-Systemen betrachtet. Co32Ni21Cr8Al0.5Y Haftschichten wurden mithilfe des Verfahrens des atmosphärischen Plasmaspritzens (APS) auf Inconel 600 Substrate aufgebracht. Jm nächsten Schritt wurden durch DC-Magnetronsputter dünne Aluminumschichten auf die Oberfläche aufgetragen. Schließlich wurde YSZ TC mittels APS auf die Oberfläche gespritzt. Die beiden TBC-Systeme wurden zur Unterscheidung des Einflusses der thermischen Auslagerung unterschiedlich lange ausgelagert, um das thermochemischen Transformationsverhalten der Al-Zwischenschicht zu bestimmen. Die Schichtlebensdauer wurde unter thermischer Zyklierung mit einer definierten Verweilzeit untersucht. Das veränderte TBC-System mit der Al-Zwischenschicht (Al TBC) wurden mit dem TBC-System ohne Al-Zwischenschicht (R TBC) verglichen.
Die Ergebnisse zeigen, dass das Hinzufügung der Al-Schichte in der BC/TC Grenzfläche nützlich für die Bildung der kontinuierlichen α Al2O3-Schicht während der Vorbereitungsphase der Wärmebehandlung ist. Diese dichte α Al2O3-Schicht bildet offensichtlich eine Durchgangsbarriere für den Sauerstoff während des Lebensdauertests. Dies hat Potential für die Verringerung der Bildung schädlicher Oxide. Der Ansatz ist nützlich für die Verlängerung der stabilen Wachstumsphase von TGO. In der Folge ermöglicht dies eine höhere Lebensdauer von Al-TBC-Systemen im Vergleich zu R-TBC-Systemen für die betrachteten thermischen Bedingungen und Zyklierungen.:Table of contents
1 Introduction 1
2 Motivation and overall interest 3
3 State of science and technology 5
3.1 Thermal barrier coating (TBC) systems 5
3.1.1 Substrate material 6
3.1.2 Ceramic top coating 6
3.1.3 Metallic bond coating 8
3.1.4 Thermally grown oxides (TGO) 12
3.1.5 Approaches on controlled TGO formation 15
3.1.6 Failure modes of TBC systems 17
3.2 Thermal spray technology 20
3.2.1 Atmospheric plasma spray (APS) technique 20
3.2.2 Formation sequence of the coating 21
3.2.3 Structure of the coating 22
3.3 Technology of thin layer deposition 23
3.4 Conclusions from the state of science and technology 24
4 Scientific objectives and work program 26
5 Experimental procedure 30
5.2 Material selection 30
5.3 Feedstock materials and thermal spray powders 32
5.4 Process selection 33
5.5 Specification of the scientific instruments 33
5.6 Detailed experimental procedure 34
5.6.1 Characterization of thermal spray powders 34
5.6.2 Preparation and characterization of overlaid coatings 35
5.6.3 Thermal treatment of TBC systems 39
5.6.4 Characterization of heat treated coating systems 40
5.6.5 Evaluation of TGO thickness and crack propagation 41
6 Results and discussions 43
6.1 Thermal spray powders and as sprayed coatings 43
6.1.1 Thermal spray powders 43
6.1.1.1 CoNiCrAlY thermal spray powder 43
6.1.1.2 ZrO2 – 8 %Y2O3 thermal spray powders 47
6.1.2 As-sputtered Al layer 50
6.1.2.1 Microstructure features 50
6.1.2.2 Elemental and phase composition analyses 50
6.1.3 As-sprayed coating systems 51
6.1.3.1 Bare and Al-covered CoNiCrAlY coatings 51
6.1.3.2 As-sprayed TBC systems 55
6.2 TBC systems after thermal treatment with different spans of dwell time 58
6.2.1 Thermal treatment with 5 and 30 min dwell time 58
6.2.2 Thermal treatment with 60 and 120 min dwell time 67
6.3 Lifetime test of TBC systems 68
6.3.1 Features in the cross section microstructure 68
6.3.2 Phase composition analyses 71
6.3.3 Elemental and Raman analyses 72
6.3.4 Features in the BC/TC of TBC systems after 80 thermal cycles 87
6.4 Thickness of TGO in the TBC systems 89
6.5 Length of cracks in the TC of the TBC systems 91
6.6 Relation between thickness of TGO and length of cracks 93
6.7 Discussion of loading condition and failure mode 95
6.8 Lifetime prediction of the TBC systems 97
6.9 Oxidation model of the TBC systems 98
7 Complementary work with discussion 100
7.1 Oxidation behavior of the TBC systems based on slow heating and cooling rates 100
7.1.1 Thickness of TGO and length of cracks 108
7.1.2 Raman analyses 112
7.1.3 Oxidation model of the TBC systems 116
7.2 Effect of Al content in the metallic coating 118
8 Complementary discussion 121
8.1 Effect of temperature on the oxidation behavior 121
8.2 Effect of deposition technique for metallic coating on the oxidation behavior 122
8.3 Effect of deposition technique for ceramic coating on the oxidation behavior 122
9 Summary and conclusion 124
10 References 128 / Conventional thermal barrier coating (TBC) systems consist of yttria-stabilized zirconia (YSZ) top coat (TC) on a MCrAlY bond coat (BC), where “M” stands for Co, Ni or CoNi. During their service under a combined heat and oxygen load, a reaction zone forms in the BC/TC interface. This reaction zone consists of thermally grown transition metal oxides (TGO).
In the present thesis work, a phenomena related to the TGO formation is introduced. Co32Ni21Cr8Al0.5Y BC was overlaid by atmospheric plasma spraying (APS) technique on Inconel 600 substrates. Thin Al layers were deposited subsequently by DC-Magnetron sputtering on top. Finally, YSZ TC was sprayed by APS technique on the Al layers. The TBC systems were subjected to different thermal treatment procedures in order to investigate the thermo-chemical transformation behaviour of the Al-interlayer. The lifetime of the coatings was investigated under thermal cycling loading with dwell time. The altered TBC systems with Al interlayers (Al-TBC) were compared with the reference TBC systems without Al interlayers (R-TBC).
The results show, that the addition of Al layers in the BC/TC interfaces is useful to form a continuous α-Al2O3 layer during the preliminary stage of heat treatment. The in-situ formed dense α-Al2O3 layer obviously acts as a diffusion barrier for oxygen during lifetime test. This has the potential to reduce the formation rate of detrimental oxides. This approach is beneficial to prolong the steady-state growth stage of the TGO, hence allows a higher lifetime for the
Al-TBC systems in comparison to the R-TBC systems for the applied thermal loads.:Table of contents
1 Introduction 1
2 Motivation and overall interest 3
3 State of science and technology 5
3.1 Thermal barrier coating (TBC) systems 5
3.1.1 Substrate material 6
3.1.2 Ceramic top coating 6
3.1.3 Metallic bond coating 8
3.1.4 Thermally grown oxides (TGO) 12
3.1.5 Approaches on controlled TGO formation 15
3.1.6 Failure modes of TBC systems 17
3.2 Thermal spray technology 20
3.2.1 Atmospheric plasma spray (APS) technique 20
3.2.2 Formation sequence of the coating 21
3.2.3 Structure of the coating 22
3.3 Technology of thin layer deposition 23
3.4 Conclusions from the state of science and technology 24
4 Scientific objectives and work program 26
5 Experimental procedure 30
5.2 Material selection 30
5.3 Feedstock materials and thermal spray powders 32
5.4 Process selection 33
5.5 Specification of the scientific instruments 33
5.6 Detailed experimental procedure 34
5.6.1 Characterization of thermal spray powders 34
5.6.2 Preparation and characterization of overlaid coatings 35
5.6.3 Thermal treatment of TBC systems 39
5.6.4 Characterization of heat treated coating systems 40
5.6.5 Evaluation of TGO thickness and crack propagation 41
6 Results and discussions 43
6.1 Thermal spray powders and as sprayed coatings 43
6.1.1 Thermal spray powders 43
6.1.1.1 CoNiCrAlY thermal spray powder 43
6.1.1.2 ZrO2 – 8 %Y2O3 thermal spray powders 47
6.1.2 As-sputtered Al layer 50
6.1.2.1 Microstructure features 50
6.1.2.2 Elemental and phase composition analyses 50
6.1.3 As-sprayed coating systems 51
6.1.3.1 Bare and Al-covered CoNiCrAlY coatings 51
6.1.3.2 As-sprayed TBC systems 55
6.2 TBC systems after thermal treatment with different spans of dwell time 58
6.2.1 Thermal treatment with 5 and 30 min dwell time 58
6.2.2 Thermal treatment with 60 and 120 min dwell time 67
6.3 Lifetime test of TBC systems 68
6.3.1 Features in the cross section microstructure 68
6.3.2 Phase composition analyses 71
6.3.3 Elemental and Raman analyses 72
6.3.4 Features in the BC/TC of TBC systems after 80 thermal cycles 87
6.4 Thickness of TGO in the TBC systems 89
6.5 Length of cracks in the TC of the TBC systems 91
6.6 Relation between thickness of TGO and length of cracks 93
6.7 Discussion of loading condition and failure mode 95
6.8 Lifetime prediction of the TBC systems 97
6.9 Oxidation model of the TBC systems 98
7 Complementary work with discussion 100
7.1 Oxidation behavior of the TBC systems based on slow heating and cooling rates 100
7.1.1 Thickness of TGO and length of cracks 108
7.1.2 Raman analyses 112
7.1.3 Oxidation model of the TBC systems 116
7.2 Effect of Al content in the metallic coating 118
8 Complementary discussion 121
8.1 Effect of temperature on the oxidation behavior 121
8.2 Effect of deposition technique for metallic coating on the oxidation behavior 122
8.3 Effect of deposition technique for ceramic coating on the oxidation behavior 122
9 Summary and conclusion 124
10 References 128
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33761 |
Date | 03 May 2019 |
Creators | Ali, Ibrahim El Araby Megahed |
Contributors | Lampke, Thomas, Lampke, Thomas, Pawlowski, Lech, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds