Return to search

Investigation of Hybrid Steam/Solvent Injection to Improve the Efficiency of the SAGD Process

Steam assisted gravity drainage (SAGD) has been demonstrated as a proven technology to unlock heavy oil and bitumen in Canadian reservoirs. Given the large energy requirements and volumes of emitted greenhouse gases from SAGD processes, there is a strong motivation to develop enhanced oil recovery processes with lower energy and emission intensities.

In this study, the addition of solvents to steam has been examined to reduce the energy intensity of the SAGD process. Higher oil recovery, accelerated oil production rate, reduced steam-to-oil ratio, and more favorable economics are expected from the addition of suitable hydrocarbon additives to steam.

A systematic approach was used to develop an effective hybrid steam/solvent injection to improve the SAGD process. Initially, an extensive parametric simulation study was carried out to find the suitable hydrocarbon additives and injection strategies. Simulation studies aim to narrow down hybrid steam/solvent processes, design suitable solvent type and concentration, and explain the mechanism of solvent addition to steam. In the experimental phase, the most promising solvents (n-hexane and n-heptane) were used with different injection strategies. Steam and hydrocarbon additives were injected in continuous or alternating schemes. The results of the integrated experimental and simulation study were used to better understand the mechanism of hybrid steam/solvent processes.

Experimental and simulation results show that solvent co-injection with steam leads to a process with higher oil production, better oil recovery, and less energy intensity with more favorable economy. Solvent choice for hybrid steam/solvent injection is not solely dependent on the mobility improvement capability of the solvents but also reservoir properties and operational conditions such as operating pressure and injection strategy.

Pure heated solvent injection requires significant quantities. A vaporized solvent chamber is not sustainable due to low latent heat of the solvents. Alternating steam and solvent injection provides heat for the solvent cycles and increases oil recovery. Co-injection of small volumes (5-15% by volume) of suitable solvents at the early times of the SAGD operation considerably improves the economics of the SAGD process.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/149633
Date03 October 2013
CreatorsArdali, Mojtaba
ContributorsBarrufet, Maria, Lane, Robert, Schubert, Jerome, Sun, Yuefeng
Source SetsTexas A and M University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.0267 seconds