Return to search

Nonisothermal Crystallization and Thermal Degradation Behaviors of Poly(butylene succinate) and its Copolyesters with Minor Amounts of 2-methyl-1,3-Propylene Succinate

Poly(butylene succinate) (PBSu), poly(2-methyl-1,3-propylene succinate) (PMPSu), and their two novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s (PBMPSu 95/05 and PBMPSu 90/10) were synthesized by a two-stage esterification reaction. PBMPSu 95/05 and PBMPSu 90/10 were characterized as having 6.5 and 10.8 mol% 2-methyl-1,3-propylene succinate (MPS) units, respectively, by 1H NMR. These copolymers were characterized to be random from the 13C NMR spectra. In this study, the nonisothermal crystallization and thermal degradation behaviors of the polyesters were investigated via different approaches. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) were employed to investigate the nonisothermal crystallization of these copolyesters and neat PBSu. Morphology and the isothermal growth rates of spherulites under PLM experiments at three cooling rates of 1, 2.5 and 5 ¢XC/min were monitored and obtained by curve-fitting. These continuous rate data were analyzed with the Lauritzen-Hoffman equation. A transition of regime II ¡÷ III was found at 96.2, 83.5, and 77.9 ¢XC for PBSu, PBMPSu 95/05, and PBMPSu 90/10, respectively. DSC exothermic curves at five cooling rates of 1, 2.5, 5, 10 and 20 ¢XC/min show that almost all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Tobin, Ozawa, Mo, Friedman and Vyazovkin equations. All the results of PLM and DSC measurements reveal that incorporation of minor MPS units into PBSu markedly inhibits the crystallization of the resulting polymer. The nonisothermal crystallization behavior of these polyesters was also investigated using a Fourier-transform infrared spectrometer (FTIR) with an attenuated total reflection (ATR). The absorbance peaks of crystals for the £\ form (918, 955, and 1045 cm-1) of PBSu and PBMPSu copolyesters were observed by ATR-FTIR under nonisothermal crystallization. When these semicrystalline polyesters started to be solidified from the melt state, these characteristic absorption bands for PBSu and its copolyesters crystals have been detected.
In this study, the thermal degradation mechanisms of PBSu, PMPSu, PBMPSu 95/05, and PBMPSu 90/10 were investigated using a thermogravimetric analyzer combined Fourier-transform infrared spectrometer (TGA-FTIR) and a pyrolysis-gas chromatography¡Vmass spectrometry (Py-GC-MS). The volatile products evolved from the thermal degradation of these two copolyesters were identified to be anhydride, ether, ester, alcohol, alkene, aldehyde, and CO2. FTIR spectra displayed that the main degradation products for these four polymers were anhydrides. Moreover, PBSu-rich PBMPSu copolymers exhibited the same thermal degradation mechanism as that of PBSu at lower thermal degradation temperatures (< 403 ºC) and as that of PMPSu at higher thermal degradation temperatures (> 403 ºC) by the TGA-FTIR analysis. The results of the TGA-FTIR analysis clearly demonstrates that the influence of MPS units on the thermal degradation process is gradually increased as the temperature increases for PBMPSu copolymers. The degradation mechanism of PBMPSu at lower thermal degradation temperatures and PBSu mainly follows the £]-hydrogen bond scission mechanism and the back-biting process from the polymer chains. Moreover, the degradation mechanism of PBMPSu at higher thermal degradation temperatures and PMPSu occurred mainly through the £]-hydrogen bond scission and secondarily through £\-hydrogen bond scission.
Finally, the thermal stability and degradation kinetics of these polyesters were investigated using a TGA at heating rates of 1, 3, 5, and 10 ºC/min under dynamic nitrogen. The activation energies of thermal degradation in elective conversions were estimated using the Friedman and Ozawa methods. The results clearly demonstrated that the thermal stabilities of these PBMPSu copolyesters were slightly reduced with the incorporation of minor MPS units into PBSu. Two model-fitting methods of nth-order and autocatalysis nth-order reaction mechanisms were adopted to determine the mass loss function f(£\), the activation energy and the associated degradation parameters. The results revealed that the mechanism of autocatalysis nth-order fitted the experimental data much more closely than did the nth-order mechanism for PBSu, PMPSu and PBMPSu copolymers.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0811112-113851
Date11 August 2012
CreatorsLu, Jin-Shan
ContributorsFang-Chyou Chiu, Feng-Er Yu, Chang-Mou Wu, An-Chung Su, Ming Chen, Tzong-Ming Wu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0811112-113851
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0015 seconds