Return to search

Identification des mécanismes physico-chimiques impliqués dans le post-traitement plasma des gaz d'échappement et études comparatives des différentes technologies plasma / Identification of physico-chemical mechanisms involved in plasma exhaust after-treatment and comparative studies of various plasma technologies

Le nouveau mode de combustion HCCI est adapté pour réduire les émissions d’oxydes d’azote et de particules fines issues de moteurs Diesel afin de respecter les futures normes d’émission Euro de plus en plus drastiques. Ce type de combustion se traduit par l’augmentation des émissions de monoxyde de carbone et des hydrocarbures et par une faible température des gaz d’échappement retardant ainsi leur conversion par le catalyseur d’oxydation Diesel (DOC). C’est dans ce contexte environnemental et économique que le couplage plasma-catalyseur apparait comme une solution intéressante afin d’améliorer l’efficacité du traitement des gaz d’échappement Diesel. Cette thèse est dédiée à l’étude du couplage d’un plasma non-thermique de type décharge à barrière diélectrique (DBD) et d’un catalyseur d’oxydation Diesel (Pt-Pd/Al2O3) pour le traitement de mélanges gazeux représentatifs d’un échappement de moteur Diesel HCCI (O2-NO-H2O-CO-CO2-CH4-C3H6- C7H8-C10H22-N2). Les expériences avec un réacteur plasma pilote ont été menées sur deux bancs expérimentaux : le premier à l’échelle laboratoire en vue de comprendre la physico-chimie impliquant le plasma et le catalyseur avec une attention particulière pour les sous-produits de réaction, et le second à l’échelle industriel afin de déterminer l’efficacité et la faisabilité d’un tel couplage dans les conditions de débit et de température les plus proches possibles de celles rencontrées en sortie moteur véhicule. L’étude menée en fonction de la puissance injectée dans le milieu, la VVH, la température des gaz, ainsi que la nature du cycle de roulage a permis de montrer l’efficacité du plasma pour abaisser de façon significative la température d’activation du DOC pour l’oxydation de CO et des hydrocarbures. Aussi, la présence du plasma en amont du DOC a permis, sur un cycle NEDC simulé, une réduction de 68% et 42% des masses de CO et des hydrocarbures émis en accord avec la norme Euro6 (2014). L’efficacité du plasma pour l’oxydation des hydrocarbures et de NO à basse température dans ces conditions de débits élevés (jusqu’à 900 Lmin−1 sur le cycle NEDC) a été confirmée et les principaux produits de réaction identifiés et quantifiés. / The new HCCI combustion mode is well adapted to improve nitrogen oxide and particulate matter reduction from Diesel engine in order to meet future emission regulations adopted in the Euro zone. However, HCCI engines emit relatively high amounts of unburned hydrocarbons and carbon monoxide due to lower engine exhaust temperature increasing the catalyst light-off time and decreasing the average efficiency of the Diesel oxidation catalyst (DOC). In this environmental and economic context, the combination of plasma with DOC has been considered especially for intermittent use during the cold start. The thesis presents the combination of nonthermal plasma upstream Diesel oxidation catalyst (Pt-Pd/Al2O3) applied to the treatment of simulating Diesel HCCI exhaust gas (O2-NO-H2O-CO-CO2-CH4-C3H6-C7H8-C10H22-N2). The studies were conducted at atmospheric pressure with a pilot-scale dielectric barrier discharge reactor (DBD) on two experimental devices. The first is a laboratory scale set-up (low flow rate : 20 Lmin−1) used to understand the physico-chemical involving the plasma and the catalyst by focusing on the by-products reactions. The second is an industrial scale (gas flow rate up to 260 Lmin−1) used to study the feasibility and the efficiency of the plasma-DOC system under conditions similar to those encountered in Diesel exhaust engine. The effects of the plasma, the DOC and the plasma-DOC systems on the exhaust gas have been investigated under various conditions. The main contribution of the plasma was to give a « thermal » and a chemical « push » to the DOC resulting in the decrease of light-off temperature for CO and HC oxidation. These improvements were shown to depend on the treatment conditions (injected energy i.e. energy density, space velocity, gas temperature and nature of the driving cycle). It is shown that for a simulated European Driving Cycle (NEDC), the combination of plasma upstream DOC reduces the cumulative mass of CO and hydrocarbons by about 68% and 42%, respectively, in accordance with the Euro 6 standard (2014). The efficiency of plasma for hydrocarbons and NO oxidation at low temperature in high flow conditions (up to 900 Lmin−1 on the NEDC) has been confirmed and the main reaction products identified and quantified.

Identiferoai:union.ndltd.org:theses.fr/2012ORLE2049
Date18 December 2012
CreatorsLeray, Alexis
ContributorsOrléans, Khacef, Ahmed
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0146 seconds