Return to search

A Simplified Approach to Thermomechanical Fatigue and Application to V-shaped Notches

A vast array of high value parts in land- and air-based turbomachinery are subjected to non-isothermal cycling in the presence of mechanical loading. Crack initiation, growth and eventual failure more significantly reduce life in these components compared to isothermal conditions. More accurate simulation of the stress and strain evolution at critical locations of components, as well as test specimens, can lead to a more accurate prediction of remaining life to a structural integrity specialists. The focus of this thesis is to characterize the effects of thermomechanical fatigue (TMF) on generic turbomachinery alloy. An expression that can be used to estimate the maximum and minimum stress under a variety of loading conditions is formulated. Analytical expressions developed here are modifications of classic mechanics of materials methods (e.g. Neuber's Rule and Ramberg-Osgood). The novel models are developed from a collection of data based on parametric finite element analysis to encompass the complex load history present in turbine service conditions. Relevance of the observations and formulated solutions are also explored for the case of a tensile specimen containing a v-shaped notch. Accurate estimations of non-isothermal fatigue presented here endeavor to improve component lifing and decrease maintenance costs.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2489
Date01 August 2013
CreatorsBouchenot, Thomas
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.002 seconds