Incore thermionic space reactor design concepts which operate at a
nominal power output range of 20 to 50 kWe are described. Details of the
neutronic, thermionic, thermal hydraulics and shielding performance are
presented. Due to the strong absorption of thermal neutrons by natural
tungsten, and the large amount of that material within the reactor core,
two designs are considered.
An overall system design code has been developed at Oregon State
University to model advanced incore thermionic energy conversion based
nuclear reactor systems for space applications. The code modules include
neutronics and core criticality, a thermionic fuel element performance
module with integral thermal hydraulics calculation capability, a
radiation shielding module, and a module for the waste heat rejection.
The results show that the driverless single cell ATI configuration,
which does not have driver rods, proved to be more efficient than the
driven core, which has driver rods. It also shows that the inclusion of
the true axial and radial power distribution decrease the overall
conversion efficiency. The flattening of the radial power distribution by
three different methods would lead to a higher efficiency. The results
show that only one thermionic fuel element (TFE) works at the optimum
emitter temperature; all other TFEs are off the optimum performance and
result in 40 % decrease of the efficiency of the overall system. / Graduation date: 1993
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/35935 |
Date | 12 October 1992 |
Creators | Lee, Hsing Hui |
Contributors | Klein, Andrew C. |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0014 seconds