Return to search

Laboratory testing protocols to represent thermo-mechanical signatures of high strength concretes in medium to mass sized placements

Structural elements comprised of high strength concrete (HSCs) have gained popularity due to their high compressive strength, increased tensile strength, and low permeability that can be achieved with smaller placements relative to what would be needed with traditional ready mixed concretes. HSCs are also gaining interest for mass placements that are very large. Determining in-place properties of any of these structures is critical to the overall success of a project and elusive to determine prior to placement. In this dissertation, a laboratory based thermo-mechanical framework is outlined to predict in-place properties of modest to mass sized HSC structures using mostly existing and common laboratory testing methods with a few additional items on the same scale as existing equipment. Various curing protocols were evaluated in this study to determine a recommended set of protocols to reproduce thermal profiles of modest and mass sized structures on laboratory scale specimens. These specimens can then be tested following standard testing protocols to reasonably estimate in-place mechanical properties. This framework is envisioned to be a foundational piece of a standard test method in the future. Approximately 600 concrete specimens were tested for compressive strength, 300 specimens for elastic modulus, 100 for splitting tensile strength as well as 100 cement paste specimens for compressive strength. Additionally, approximately 400 time-temperature curves were recorded for both cement paste and HSC specimens.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6089
Date30 April 2021
CreatorsCarey, Ashley Suzanne
PublisherScholars Junction
Source SetsMississippi State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.002 seconds