Dans la première partie de cette thèse de doctorat une méthodologie est présentée qui permet de prédire les niveaux de suies produits dans des flammes laminaires monodimensionnelles, ou un modèle semi-empirique de suies est utilisé en combinaison avec une chimie complexe et un solveur radiatif détaillé. La méthodologie est appliquée au calcul de suies dans une série de flammes de diffusion à contre-courant d'éthylène/air. Plusieurs modèles d'oxydation de suies sont testés et les constantes du modèle sont ajustées afin de retrouver un meilleur accord avec les expériences. L'effet des pertes thermiques radiatives sur la formation de suies et la structure des flammes est évalué. Finalement, la performance du modèle de suies est évalué sur des flammes prémélangées monodimensionnelles, ou une expression alternative du terme de croissance de surface est proposée pour reproduire les résultats expérimentaux. Dans la deuxième partie de cette thèse, des outils de Simulation aux Grandes Échelles (SGE) et d'analyse acoustique sont appliqués à la prédiction des oscillations de cycle limite (OCL) d'une instabilité thermo-acoustique qui apparaît dans un brûleur académique partiellement prémélangé de méthane/air à pression atmosphérique. La SGE prédit bien l'apparition et le développement des OCL est un bon accord est trouvé entre simulations et expériences en termes d'amplitude et fréquence des OCL. La simulation permet de révéler certains aspects clés responsables du comportement instable de la flamme. Ensuite, une analyse préliminaire de la quantification des incertitudes est fait, ou l'effet des paramètres tels que l'impédance des entrées, le degré de raffinement du maillage ou les pertes thermiques sur les caractéristiques des OCL est évalué. Aussi, la SGE prédit bien la dépendance de la stabilité de la flamme du point d'opération et de la géométrie du brûleur / In the first part of the present PhD. thesis a methodology is presented that allows to predict the soot produced in one-dimensional academic flames, where a semi-empirical soot model is used in combination with a complex chemistry and a detailed radiation solver. The methodology is applied to the computation of soot in a set of ethylene/air counterflow diffusion flames. Several oxidation models are tested and the constants of the model were adjusted to retrieve the experimental results. Also, the effect of radiative losses on soot formation and the flame structure is evaluated. Finally, the performance of the soot model is evaluated on 1D premixed flames, where an alternative expression for the surface growth term is proposed to better reproduce the experimental findings. In the second part of the thesis, Large-Eddy Simulation (LES) and acoustic analysis tools are applied to the prediction of limit cycle oscillations (LCO) of a thermo-acoustic instability appearing in a partially premixed methane/air academic burner operating at atmospheric pressure. The LES captures well the appearance and development of the LCO and a good agreement is found between simulations and experiments in terms of amplitude and frequency of the LCO. Some light is shed on the mechanisms leading to the existence of such instability. Then, a preliminar uncertainty quantification (UQ) analysis is performed, where the effect on the features of the LCO of several computational parameters such as the inlets impedances, mesh refinement or heat losses is assessed. Also, the LES captures well the flame stability behaviour dependence on the operating point and the burner geometry
Identifer | oai:union.ndltd.org:theses.fr/2011INPT0134 |
Date | 14 December 2011 |
Creators | Hernández Vera, Ignacio |
Contributors | Toulouse, INPT, Cuenot, Bénédicte, Staffelbach, Gabriel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0455 seconds