Return to search

Thermal and oxidation resistant barrier on carbon fiber with Si and Si–Ti based pre-ceramic coatings for high temperature application

Carbon fiber (CF) must be protected from thermal oxidation for high temperature application because of its low thermo-oxidative stability above 450°C in air. CF is now increasingly being used as a reinforcing material in the construction industry. A thermal and oxidation resistant coating is necessary for CF-reinforced concrete (CFRC) composites in order to satisfy a high level of safety standard in the case of fire. New types of pre-ceramic coatings, such as Tyranno® polymer (Si–Ti based pre-ceramic) and SiO₂ sol–gel, have been deposited on CF filament yarn by means of a wet chemical continuous dip coating method. The results of surface analyses, e.g. scanning electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy, showed the changes in topographical properties of CF caused by the coatings. Thermogravimetric analysis proved that the high temperature (up to 800°C) oxidation stability of CF was considerably improved due to the coatings. Tensile test results indicated that the strength of CF yarn at 20°C was increased by up to 80% with the coatings. Thermo-mechanical properties were also enhanced up to 600°C. CF yarn retains its original strength and elasticity modulus, i.e. the stiffness at 700°C, with a Tyranno® polymer coating.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35416
Date18 September 2019
CreatorsShayed, Mohammad Abu, Hund, Heike, Hund, Rolf-Dieter, Cherif, Chokri
PublisherSage
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1746-7748, 10.1177/0040517515595025

Page generated in 0.0019 seconds