Return to search

Localized failure for coupled thermo-mechanics problems : applications to steel, concrete and reinforced concrete

During the last decades, the localized failure of massive structures under thermo-mechanical loads becomes the main interest in civil engineering due to a number of construction damaged and collapsed due to fire accident. Two central questions were carried out concerning the theoretical aspect and the solution aspect of the problem. In the theoretical aspect, the central problem is to introduce a thermo-mechanical model capable of modeling the interaction between these two physical effects, especially in localized failure. Particularly, we have to find the answer to the question: how mechanical loading affect the temperature of the material and inversely, how thermal loading result in the mechanical response of the structure. This question becomes more difficult when considering the localized failure zone, where the classical continuum mechanics theory can not be applied due to the discontinuity in the displacement field and, as will be proved in this thesis, in the heat flow. In terms of solution aspect, as this multi-physical problem is mathematical represented by a differential system, it can not be solved by an 'exact' analytical solution and therefore, numerical approximation solution should be carried out. This thesis contributes in both two aspects. Particularly, thermomechanical models for both steel and concrete (the two most important materials in civil engineering), which capable of controling the hardening behavior due to plasticity and/or damage and also the softening behavior due to the localized failure, are carried out and discussed. Then, the thermomechanical problems are solved by 'adiabatic' operator split procedure, which 'separates' the multi-physical process into the 'mechanical' part and the 'thermal' part. Each part is solved individually by another operator split procedure in the frame-work of embbed-discontinuity finite element method. In which, the 'local' discontinuities of the displacement field and the heat flow is solved in the element level, for each element where localized failure is detected. Then, these discontinuities are brought into the 'static condensation' form of the overall equilibrium equation, which is used to solved the displacement field and the temperature field of the structure at the global level. The thesis also contributes to determine the ultimate response of a reinforced concrete frame submitted to fire loading. In which, we take into account not only the degradation of material properties due to temperature but also the thermal effect in identifying the total response of the structure. Moreover, in the proposed method, the shear failure is also considered along with the bending failure in forming the overal failure of the reinforced structure. The thesis can also be extended and completed to solve the behavior of reinforced concrete in 2D or 3D case considering the behavior bond interface or to take into account other type of failures in material such as fatigue or buckling. The proposed models can also be improved to determine the dynamic response of the structure when subjected to earthquake and/or impact.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00978452
Date06 December 2013
CreatorsNgo, Van Minh
PublisherÉcole normale supérieure de Cachan - ENS Cachan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0023 seconds