Return to search

Enhancing concrete infrastructure integrity : integrating active thermography and ground penetrating radar for delamination detection

Les délaminations sous-surfaciques représentent une menace significative pour l'intégrité structurelle des composants en béton et nécessitent des méthodes de tests non destructives (NDT) efficaces et fiables pour une détection rapide. Cette étude examine l'intégration de la thermographie infrarouge active (IRT) et du radar à pénétration de sol (GPR) pour la détection et l'évaluation de la délamination dans les dalles de béton. Deux spécimens de laboratoire, construits en béton armé et intentionnellement conçus pour simuler une délamination interne, sont soumis à des tests à l'aide de méthodes IRT et GPR. La méthodologie implique l'utilisation d'une approche de thermographie infrarouge par chauffage par étapes, qui nécessite la capture d'images thermographiques brutes tout au long des phases de chauffage et de refroidissement. Ce processus documente les variations thermiques et aide à identifier les modèles de dommages sous-surfaciques. Simultanément, le radar à pénétration de sol (GPR) est intégré dans le processus d'évaluation pour mesurer l'étendue et la gravité de la délamination à l'intérieur des spécimens. Le GPR fournit des informations détaillées sur l'intérieur des spécimens en utilisant des ondes électromagnétiques haute fréquence. Il mesure le temps que mettent les impulsions radar pour traverser les matériaux et refléter à la surface. Ces données, associées aux résultats thermographiques, offrent une compréhension complète des conditions internes des dalles de béton. La conception expérimentale implique deux spécimens de béton identiques en taille mais avec et sans armature pour explorer l'impact des barres d'armature sur les capacités de détection des méthodes IRT et GPR. L'étude inclut des défauts de différentes tailles et profondeurs, permettant une évaluation complète des performances des méthodes dans différentes conditions. La méthode de thermographie active, caractérisée par un rapport taille-profondeur de 0.83, montre une capacité remarquable à détecter presque tous les défauts. Les données thermographiques, acquises pendant le processus de refroidissement, fournissent des informations primordiales sur les signatures thermiques des delaminations. Le GPR se révèle très efficace pour identifier toutes les anomalies sous-surfaciques, même les plus profondes et les plus petites. L'étude souligne les forces complémentaires de l'IRT et du GPR, où l'IRT offre une couverture plus large et le GPR fournit des informations précises sur la profondeur. Les résultats de cette étude fournissent une base solide pour les développements futurs dans la surveillance de la santé structurelle et la maintenance des structures en béton. / Subsurface delaminations pose a significant threat to the structural integrity of concrete components and they require effective and reliable non-destructive testing (NDT) methods for early detection. This study investigates the integration of Active Infrared Thermography (IRT) and Ground Penetrating Radar (GPR) for the detection and evaluation of delamination in concrete slabs. Two laboratory specimens, built from reinforced concrete and intentionally designed to simulate internal delamination, are subjected to testing using IRT and GPR methods. The methodology involves employing a step-heating Infrared Thermography (IRT) approach, which requires capturing raw thermographic images throughout both the heating and cooling phases. This process documents thermal variations and helps identify subsurface damage patterns. Simultaneously, Ground Penetrating Radar (GPR) is integrated into the assessment process to measure the extent and severity of delamination within the specimens. GPR provides detailed subsurface information using high-frequency electromagnetic waves. It measures the time that radar pulses take to travel through materials and reflect back to the surface. This data along with the thermographic findings, offer a comprehensive understanding of the internal conditions of the concrete slabs. The experimental design involves two concrete specimens that are identical in size but with and without reinforcement to explore the impact of rebars on the detection capabilities of the IRT and GPR methods. The study includes defects of different sizes and depths, enabling a comprehensive evaluation of the methods' performance under different conditions. The active thermography method, characterized by a size-to-depth ratio of 0.83, shows a remarkable ability to detect nearly all defects. The thermographic data, acquired during the cooling process, provides valuable insights into the thermal signatures of the defects. The GPR proves highly efficient in identifying all subsurface anomalies, even the deepest and smallest. The study emphasizes the complementary strengths of IRT and GPR, where IRT provides broader coverage, and GPR offers precise depth information. The findings of this study provide a solid foundation for future developments in structural health monitoring and maintenance of concrete structures.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/148787
Date05 September 2024
CreatorsOmidi, Zahra
ContributorsMaldague, Xavier
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (ix, 53 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0177 seconds