La thermographie à phase pulsée (TPP) a été présentée comme une nouvelle technique robuste de thermographie infrarouge (TIR) pour les essais non destructifs (END). Elle utilise la transformée de Fourier discrète (TFD) sur les images thermiques obtenues après un chauffage flash de la surface avant d'un spécimen pour extraire les informations de délai de phase (ou phase). Les gammes de phase calcules (ou cartes de phase) sont utilises pour la visualisation des défauts dans de nombreux matériaux. Le contraste de température permet de détecter les défauts à partir des données thermographiques. Cependant, les images thermiques comportent généralement un niveau de bruit important et des arrière-plans non uniformes causés par un chauffage inégal et des réflexions environnementales. Par conséquent, il n'est pas facile de reconnaître efficacement les régions défectueuses. Dans ce travail, nous avons appliqué la technique LSTM (Long Short Term Memory) et des réseaux de neurones convolutifs (RNC) basés sur des modèles d'apprentissage profond (AP) à la détection des défauts et à la classification de la profondeur des défauts à partir de données d'images thermographiques. Nos résultats expérimentaux ont montré que l'architecture proposée basée sur l'AP a obtenu des scores de précision de 0.95 et 0.77 pour la classification des pixels sains et défectueux. En outre, les résultats expérimentaux ont montré que les techniques LSTM et RNC ont obtenu des précisions de 0.91 et 0.82 pour la classification de la profondeur des défauts, respectivement. Par conséquent, la technique LSTM a surpassé la technique RNC pour les cas de détection des défauts et de classification de la profondeur des défauts. / Pulse Phase Thermography (PPT) has been introduced as a novel robust Non-Destructive Testing (NDT) Infrared Thermography (IRT) technique. It employs Discrete Fourier Transform (DFT) to thermal images obtained following flash heating of the front surface of a specimen to extract the phase delay (or phase) information. The computed phase grams (or phase maps) are used for defect visualization in many materials. The temperature contrast enables defect detection based on thermographic data. However, thermal images usually involve significant measurement noise and non-uniform backgrounds caused by uneven heating and environmental reflections. As a result, it is not easy to recognize the defective regions efficiently. In this work, we applied Long Short-Term Memory (LSTM) and Convolutions Neural Networks works (CNNs) based on deep learning (DL) models to defect detection and defect depth classification from thermographic image data. Our experimental results showed that the proposed DL-based architecture achieved 0.95 and 0.77 accuracy scores for sound and defected pixels classification. Furthermore, the experimental results illustrated that LSTM and CNN techniques achieved 0.91 and 0.82 accuracies for defect-depth classification, respectively. Consequently, the LSTM technique overcame the CNNs technique for defect detection and defect-depth classification cases.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/73458 |
Date | 13 December 2023 |
Creators | Ahmadi, Mohammad Hossein |
Contributors | Maldague, Xavier |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (ix, 35 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0026 seconds