Return to search

Analyse énergétique du comportement thermomécanique du PA6.6 chargé de fibres de verre / Energy analysis of the thermomechanical behavior of PA6.6 reinforced with short glass fibres.

Cette étude présente une analyse thermomécanique du comportement en fatigue oligocyclique du polyamide 6.6 vierge et renforcé de fibres de verre courtes. Des bilans d'énergie sont réalisés en utilisant, de façon combinée, des techniques d'imagerie quantitative visible et infrarouge. Les champs de température sont obtenus par thermographie et les champs de déformation par corrélation d'images. Sur un cycle de chargement, on montre comment il est possible d'estimer séparément les sources de chaleurs moyennes par cycle, sources associées aux mécanismes dissipatifs et induites par les effets de couplage thermomécanique. On montre ensuite, pour différentes fréquences de chargement, l'évolution du bilan de puissance moyen par cycle sur une zone matérielle correspondant à la partie utile de l'éprouvette. Ce bilan prend en compte le taux de l'énergie de déformation, les chaleurs mises en jeu et les variations d'énergie interne. On observe que la forme du bilan de puissance est très fortement dépendante, pour un rapport de charge donné, à la fréquence de sollicitation, à la teneur en eau, à l'orientation des fibres de verre mais aussi aux niveaux de contrainte appliqués. / This study presents a thermomechanical analysis of fatigue behavior of pure and short glass- fiber reinforced polyamide 6.6. The energy balances are drew up using the combined application of visible and infrared quantitative imaging techniques. Temperature fields are obtained by thermography and strain fields by image correlation. Over one complete cycle, we show how it is possible to separately estimate the heat sources averaged over the cycle, associated with dissipative mechanisms and induced by thermomechanical coupling source effets. Then we show, for different loading rates, the time courses of the energy rate balance for a physical area corresponding to the gage part of the specimen. This balance takes into account the deformation energy rate, the heat sources and the internal energy variations. It is observed that the shape of the energy rate balance is highly dependent, for a given load ratio, to the load rate, the water content, the orientation of the glass fibers and the applied stress levels.

Identiferoai:union.ndltd.org:theses.fr/2014MON20196
Date30 October 2014
CreatorsBenaarbia, Adil
ContributorsMontpellier 2, Chrysochoos, André
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds