Lithium tetraborate (Li2B4O7) has aroused interest of scientists since 1960s by the courtesy of the thermoluminescence (TL) property it possesses. Over and above, it found widespread use in surface acoustic wave apparatuses, in sensor sector and in laser technology due to its non linear optical characteristics. For the uses in thermoluminescence dosimetry lithium tetraborate is activated by addition of a variety of metals as dopants.
This study comprises the synthesis of lithium tetraborate by two methods (high temperature solid state synthesis and water/solution assisted synthesis) as well as doping and characterization of the material. Lithium tetraborate is readily commercially available in TL dosimetry / hence, the main aim is to specify practical production conditions to pioneer domestic production.
In high temperature synthesis, the initial heating was performed at 400oC for 3 hours. Then the samples were heated at 750oC for two hours, intermittently mixed to enhance diffusion and exposed to the same temperature for another two hours. In
water/solution assisted synthesis, stoichiometric quantities of reactants were mixed in water by heating and agitating in order to achieve homogenous mixing and good dispersion of the material. The remnant of water was removed from the system by 3 hours initial heating at 150oC. The synthesis stage is followed by doping step where the metals Cu, Ag and In in different proportions were doped in lithium tetraborate by solid state and solution assisted synthesis techniques.
Powder X-ray diffraction method was employed for the characterization of the material. The thermal properties of doped and un-doped materials were studied by DTA (Differential Thermal Analyses). Besides, FT-IR (Fourier Transform Infra red) spectrometry analyses were performed in order to detect differences in the bond structure caused by doping
The XRD patterns obtained showed that lithium tetraborate production was successful by both high temperature solid state synthesis and solution assisted synthesis Moreover, it was inferred from the XRD results that addition of dopants did not have a sound effect on the crystal structure. Furthermore, the DTA results displayed that addition of different dopants to the structure of lithium tetraborate did not cause any noticeable difference. The extensive TL measurements showed that the TL response of the material produced is affected by production and doping methods.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12610416/index.pdf |
Date | 01 March 2009 |
Creators | Pekpak, Esin |
Contributors | Ozbayoglu, Gulhan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0021 seconds