Return to search

Effects Of Synthesis And Doping Methods On Thermoluminescence Glow Curves Of Manganese Doped Lithium Tetraborate

In this study, differences in glow curves of Mn doped LTB powder samples synthesized with solid and wet synthesis methods and doped by using solid and wet doping techniques were investigated. Firstly, LTB was synthesized by using wet synthesis method which mainly comprises dissolution of reactants in water as solvent. Second way to produce LTB which was used in this study was solid synthesis method. In solid synthesis method, reactants were mixed in powder form.

In the second part of the study, LTB produced by two different methods were doped with Mn and additionally Ag, Mg or P by using two different doping techniques.

In order to see structural differences between differently synthesized and differently doped LTB samples which contained different amount of dopant powder X-Ray Diffraction (XRD) method was employed. Besides, FTIR (Fourier Transform Infrared) spectroscopy analyses were performed in order to detect differences in the bond structure caused by doping. Additionally, Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) was used to determine the actual amount of dopant in LTB. Also morphological structures of samples were compared by using Scanning Electron Microscopy (SEM). Thermoluminescence measurements were performed with (TLD) Thermoluminescence Dosimeter equipment.

XRD and FTIR analysis showed that syntheses of products were done in well success. Addition of dopants did not cause any changes in structural or bonding properties of LTB. It was possible to observe that, synthesis and doping methods and dopant concentration effect the thermoluminescence glow curves of doped LTB.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12610667/index.pdf
Date01 June 2009
CreatorsKayhan, Mehmet
ContributorsYilmaz, Aysen
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0019 seconds