Inscrite dans le cadre du projet européen Coke Oven Operating Limits, cette thèse porte sur la modélisation thermomécanique d'un piédroit de cokerie. Le piédroit est une maçonnerie alvéolaire, chauffée par des gaz à haute température (supérieure à 1200°C). Pendant la cuisson du charbon dans les fours à coke, celui-ci se pyrolyse en coke provoquant une poussée sur les panneresses du piédroit. Ce projet a pour objectif de déterminer la pression maximale supportée par ces structures. Afin de répondre à cette problématique, un nouveau modèle thermomécanique de piédroit a été développé. Ce travail prend en compte à la fois le comportement non-linéaire de la maçonnerie, mais également les interactions avec l'environnement extérieur. La modélisation de la structure maçonnée est basée sur une approche macroscopique où les briques et le mortier sont remplacés par un matériau homogène équivalent, et ce pour différents états de joints. La non-linéarité du comportement est reproduite grâce à un critère d'ouverture qui permet de passer d'un état de joint à un autre. Les propriétés homogénéisées sont identifiées selon une approche énergétique couplée à un algorithme d'identification inverse. Plusieurs simulations numériques d’essais issus de la littérature ont permis de valider cette approche. Les paramètres régissant le comportement mécanique et thermique des matériaux sont déterminés expérimentalement ainsi que la tenue de l'interface brique/mortier. Les conditions aux limites du modèle sont établies à l'aide d'une instrumentation thermomécanique sur site industriel. Les simulations thermomécaniques du piédroit permettent de localiser des phénomènes de dégradation observés dans les faits. / This study lies within the framework of European project called Coke Oven Operating Limits. This thesis deals with the thermomechanical modelling of a coke oven heating wall. The heating wall is an alveolar masonry, heated thanks to gas at high temperature (superior to 1200°C). During coking time in coke ovens, there is a pyrolysis of coal to coke which implies a coke swelling pressure on chamber wall. The aim of this project is to determine the maximal lateral pressure allowed by these structures. In order to answer to this problem, a new thermomechanical model of heating wall was built. This work takes into account both non-linear masonry behaviour and interactions between the heating wall and its components. Structure modelling is based on a macroscopic approach where bricks and joints are replaced by a homogeneous equivalent medium for different joint states. The non-linearity behaviour is then reproduced thanks to a transition criterion which allows to go from one state to another one. Effective properties are determined with an energetic approach and an algorithm of inverse identification. Several numerical simulations were performed and compared with experimental tests extracted from literature to validate this approach. Material thermomechanical properties were identified experimentally, likewise masonry brick/mortar interface behaviour. Boundary conditions and loads were established from thermomechanical instrumentation of an in situ heating wall. Thermomechanical simulations of the heating wall allow to locate damages in good agreement with plants observations.
Identifer | oai:union.ndltd.org:theses.fr/2009ORLE2057 |
Date | 04 December 2009 |
Creators | Landreau, Matthieu |
Contributors | Orléans, Gasser, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds