Return to search

Hyperthermia Mediated Drug Delivery using Thermosensitive Liposomes and MRI-Controlled Focused Ultrasound

The clinical efficacy of chemotherapy in solid tumours is limited by systemic toxicity and the inability to deliver a cytotoxic concentration of anticancer drugs to all tumour cells.
Temperature sensitive drug carriers provide a mechanism for triggering the rapid release of chemotherapeutic agents in a targeted region. Thermally mediated drug release also leverages the ability of hyperthermia to increase tumour blood flow, vessel permeability, and drug cytotoxicity. Drug release from thermosensitive liposome drug carriers in the tumour vasculature serves as a continuous intravascular infusion of free drug originating at the tumour site. However, localized drug release requires precise heating to improve drug delivery and efficacy in tumours while minimizing drug exposure in normal tissue.
Focused ultrasound can noninvasively heat millimeter-sized regions deep within the body, and can be combined with MR thermometry for precise temperature control. This thesis describes the development of strategies to achieve localized hyperthermia using MRI-controlled focused ultrasound, for the purpose of image-guided heat-triggered drug release from thermosensitive drug carriers.
First, a preclinical MRI-controlled focused ultrasound system was developed as a platform for studies of controlled hyperthermia and drug delivery in rabbits. The feasibility of using ultrasound hyperthermia to achieve localized doxorubicin release from thermosensitive liposomes was demonstrated in normal rabbit muscle. Second, strategies were described for using MR thermometry to control ultrasound heating at a muscle-bone interface based on MR temperature measurements in adjacent soft tissue, demonstrating localized drug delivery in adjacent muscle and bone marrow. Third, fluorescence microscopy was employed to demonstrate that increased overall drug accumulation in rabbit VX2 tumours corresponds to high levels of bioavailable drug reaching their active site in the nuclei of tumour cells.
The results of this thesis demonstrate that image-guided drug delivery using thermosensitive liposomes and MRI-controlled focused ultrasound hyperthermia can be used to noninvasively achieve precisely localized drug deposition in soft tissue, at bone interfaces, and in solid tumours. Clinical application of this work could provide a noninvasive means of enhancing chemotherapy in a variety of solid tumours.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/43733
Date14 January 2014
CreatorsStaruch, Robert Michael
ContributorsChopra, Rajiv
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds