Return to search

Application Deinococcus radiodurans on Cellulose Degradation

There are large amount of cellulose accumulated in radioactive waste and radioactive pollution sites. It is difficult to clean up these cellulose. In general, waste treatment process can only proceed until the radiation decay to a safty level. Since most cellulolytic microorganisms could not survive in radioactive waste, the accumulation of cellulose in radioactive waste become a serious problem. Deinococcus radiodurans is highly resistant to radiation, UV light, and dryness. It is possible to use this bacterial strain in the bioremediation of radioactive waste. In this study, we found out that there was not much difference on the growth of this organism under radiation and UV light. Cellulose enzyme activity was inhibited by UV irradiation, but not by 32P radiation. The addition of D. radiodurans whole cells or its cell crude extracts could protect the cellulase from UV damage. We also successfully constructed two plasmids, that contained a cel A gene isolated from Thermotoga maritima. These two plasmids had been used to transform Escherichia coli BL21 and D. radiodurans. All transformed bacterial strains could express celA activity. The celA activities in these transformed D. radiodurans strains were not affect by UV irradiation. However, celA enzyme activity in the transformed E. coli was greatly inhibited by UV irradiation up to 78%. Hopefully these two transformed D. radiodurans bacterial strains can be applied to the bioremediation of radioactive waste.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0913102-055244
Date13 September 2002
CreatorsFu, Yi-Ching
ContributorsJong-Kang Liu, Chi-Hsin Hsu, Chan-Shing Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0913102-055244
Rightsrestricted, Copyright information available at source archive

Page generated in 0.0023 seconds