At SAPPI-Tugela a continuous Kraft wood chip digester operates in EMCC mode (extended modified continuous cooking). Chips are initially exposed to a NaOH / Na2S liquor at high temperature in the top section. The chips move downward in plug flow passing circumferential screens used to draw liquor for various circulations. About midway down the spent black liquor is removed and the chips enter the cooler bottom section where some further reaction and washing occurs. Liquor level and chip level are maintained close to each other near the top. Chips require 8-12 hours to pass through the digester, depending on the chip feed rate. The key parameter of interest at the digester exit is the Kappa number, which is a measure of the extent of delignification which has occurred. Different board and paper products require different Kappa number pulp feed. (Final properties such as tensile, tear and bursting strengths will also depend on the way fibres have been modified in the digestion). The objective of this investigation is to predict the Kappa number of the product pulp in real-time, thus facilitating quicker reaction than the present dependence on laboratory analysis permits, possibly even allowing closed-loop control. The extent of delignification depends on liquor strength, temperature and exposure time, with final Kappa number also depending on the properties of the chip feed (wood type and moisture content). Compensation to maintain a steady Kappa number is made difficult by the long and varying residence time, and the fact that any changes apply to the whole profile held up in the digester. A number of static models for Kappa number prediction have been developed by previous workers, but these do not compare well with plant measurements. The collection of data from the Sappi-Tugela reactor, and the pulp quality reports, have been used to determine an efficient model. This step required a considerable data collection exercise, and similar results to the quality reports have been obtained using a simple linear model based on this data. The problem of model error is being reduced by arrangement as a Smith Predictor, in which the model is intermittently corrected by available laboratory analyses. At the same time, an interface was created, in order to synchronise measurement data for the chips presently leaving the reactor. In order to deal with the dead time, each parcel of chips entering the reactor is effectively tracked, and the changes in Kappa number integrated for reaction time under the varying conditions in transit. Knowing the present inventory of the reactor, this model can also be run forward in time as a predictive controller, to determine optimal control actions for maintenance of the target Kappa number. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/2838 |
Date | January 2005 |
Contributors | Mulholland, Michael. |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds