Return to search

Concrete wind turbine towers in Southern Africa

Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Exponential growth of the global wind turbine market has led to a significant increase in the capacity of wind turbine generators. Modern turbines require higher support structures as higher wind speeds combined with longer blades are necessary to increase their generating capacity. The standard 80-90 m tower is thus not economically viable anymore. Transportation logistics of large steel towers has led to concrete towers becoming a viable option. There are currently no design codes dealing exclusively with the design of concrete wind turbine towers. The aim of this project is to investigate and highlight important aspects of the design process of a normally reinforced high strength concrete wind turbine tower. The tower was designed using nonlinear finite element modelling as a design tool to accurately design the tower for various loads and load cases. An analytical design method was developed that can be used in the preliminary design stage. Finally, the importance of the soil-structure interaction was investigated through a sensitivity analysis.
It was found that the formation of cracks greatly affected the stiffness of the structure and that the reduction in stiffness increased the deflection significantly. It was also found that a structure that has sufficient strength to resist the ULS loads may not necessarily comply with the maximum deflection limit for the SLS. The concrete strength class required was not only determined by the maximum compression stress the concrete would experience, but also by the stiffness required to ensure that the tower frequency is within the turbine’s working frequency. The dynamic behaviour of the tower was also affected by the formation of cracks. The fundamental frequency of the tower was reduced by 46% after the SLS loads were applied. It was found that the soil preparation for the foundation plays a vital role in ensuring that the tower frequency is not reduced to a level where it falls outside the turbine working frequency. / AFRIKAANSE OPSOMMING: Die eksponensiële groei van die globale wind turbine mark het gelei tot ʼn beduidende toename in die opwekkingskapasiteit van wind turbine kragopwekkers. Moderne turbines benodig hoër ondersteuningstrukture om hulle opwekkingskapasiteit te verhoog en daarom is die standaard 80-90 m toring nie meer geskik nie. Die vervoer logistiek van groot staal torings het daartoe gelei dat beton torings ʼn lewensvatbare opsie geword het. Daar is huidiglik geen ontwerpkodes wat uitsluitlik handel met die ontwerp van beton wind turbine torings nie. Die doel van hierdie projek is om die ontwerp proses van ʼn bewapende hoë sterkte beton wind turbine toring te ondersoek en belangrike aspekte uit te lig. Die toring word ontwerp deur ʼn nie-liniêre eindige element model te gebruik as ʼn ontwerp hulpmiddel, om die toring akkuraat te ontwerp vir verskeie laste en lasgevalle. ʼn Analitiese ontwerpmetode is ontwikkel wat gebruik kan word in die voorlopige ontwerpfase. Laastens is die grond-struktuur interaksie ondersoek deur ʼn sensitiwiteitsanalise.
Daar is gevind dat die vorming van krake die styfheid van die struktuur aansienlik beïnvloed en dat die vermindering in styfheid die defleksie beduidend vermeerder. Daar is ook gevind dat ʼn struktuur wat voldoende sterkte het om die uiterste lastoestande te weerstaan, nie noodwendig voldoen aan die maksimum defleksiegrens vir die diens lastoestande nie. Die beton sterkte klas wat benodig is, is nie net bepaal deur die maksimum druk spanning wat die beton sal ondervind nie, maar ook deur die styfheid wat vereis word om te verseker dat die toring se frekwensie binne die turbine se werksfrekwensie val. Die dinamiese gedrag van die toring is ook beïnvloed deur die vorming van krake. Die fundamentele frekwensie van die toring is verlaag met 46% nadat die diens lastoestande toegepas is. Daar is gevind dat die grond voorbereiding vir die fondasie ʼn belangrike rol speel om te verseker dat die toring se frekwensie nie verlaag word tot ʼn vlak waar dit buite die turbine se werksfrekwensie val nie.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/96021
Date12 1900
CreatorsVan Zyl, Willem Sternberg
ContributorsVan Zijl, G. P. A. G., Stellenbosch University. Faculty of Engineering. Department of Civil Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Formatxii, 116 p. : ill.
RightsStellenbosch University

Page generated in 0.002 seconds