Thesis (MSc (Mathematical Sciences))-- University of Stellenbosch, 2010. / ENGLISH ABSTRACT: We investigate the suitability of applying some of the probabilistic and automata
theoretic ideas, that have been extremely successful in the areas of
speech and natural language processing, to the area of musical style imitation.
By using music written in a certain style as training data, parameters
are calculated for (visible and hidden) Markov models (of mixed, higher
or first order), in order to capture the musical style of the training data in
terms of mathematical models. These models are then used to imitate two
instrument music in the trained style. / AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die toepasbaarheid van probabilitiese en outomaatteoretiese
konsepte, wat uiters suksesvol toegepas word in die gebied van
spraak en natuurlike taal-verwerking, op die gebied van musiekstyl nabootsing.
Deur gebruik te maak van musiek wat geskryf is in ’n gegewe styl
as aanleer data, word parameters vir (sigbare en onsigbare) Markov modelle
(van gemengde, hoër- of eerste- orde) bereken, ten einde die musiekstyl
van die data waarvan geleer is, in terme van wiskundige modelle te beskryf.
Hierdie modelle word gebruik om musiek vir twee instrumente te genereer,
wat die musiek waaruit geleer is, naboots.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/4157 |
Date | 03 1900 |
Creators | Schulze, Walter |
Contributors | Van der Merwe, A. B., University of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences. Dept. of Computer Science. |
Publisher | Stellenbosch : University of Stellenbosch |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 117 p. |
Rights | University of Stellenbosch |
Page generated in 0.002 seconds