Return to search

Non-perturbative flow equations from continuous unitary transformations

Thesis (MSc (Physics))--University of Stellenbosch, 2005. / The goal of this thesis is the development and implementation of a non-perturbative solution
method for Wegner’s flow equations. We show that a parameterization of the flowing Hamiltonian
in terms of a scalar function allows the flow equation to be rewritten as a nonlinear partial
differential equation. The implementation is non-perturbative in that the derivation of the PDE
is based on an expansion controlled by the size of the system rather than the coupling constant.
We apply this method to the Lipkin model and obtain very accurate results for the spectrum,
expectation values and eigenstates for all values of the coupling and in the thermodynamic limit.
New aspects of the phase structure, made apparent by this non-perturbative treatment, are
also investigated. The Dicke model is treated using a two-step diagonalization procedure which
illustrates how an effective Hamiltonian may be constructed and subsequently solved within this
framework.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/3125
Date12 1900
CreatorsKriel, Johannes Nicolaas
ContributorsScholtz, F. G., Geyer, H. B., University of Stellenbosch. Faculty of Science. Dept. of Physics.
PublisherStellenbosch : University of Stellenbosch
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsUniversity of Stellenbosch

Page generated in 0.0024 seconds