Return to search

The single source chemical vapour deposition of alkaline earth metal oxide thin films

Metal oxide thin films are dynamic materials that have revolutionised the nature of semiconductor and electronic thin film devices. Recently, progress has stagnated in some aspects due to the increasingly complex deposition apparatus required, and the dearth of suitable precursor complexes of certain ???difficult??? metals. This thesis seeks to address both of these issues. The application of a precursor complex, Mg6(O2CNEt2)12 to the SSCVD of MgO thin films delivered the highest quality films ever reported with this technique. The resultant films were found to be of purely (111) orientation. Due to the nature of the precursor, the chemical reactions occurring at the surface during SSCVD growth result in a high growth rate, low flux environment and films of (111) orientation have been achieved without the amorphous underlayer. This finding has important implications for buffer layers in perovskite thin film devices. The unprecedented precursor chemistry has been used as a basis for the extremely high quality material produced, along with the unusual, yet beneficial structural morphology it possesses. A new range of barium complexes with single encapsulating ligands have been prepared for use in chemical vapour deposition (CVD) of BaTiO3 thin films. A novel pathway to an unprecedented class of barium carbamates is reported, and also new dianionic bis ??-ketoesterates and their barium, strontium, and calcium analogues were synthesised. High resolution mass spectrometry showed the barium bis ??-ketoesterate derivatives to be monomeric, and preliminary testing indicated some volatility in these species. Insights were gained into the likely successful pathways to building a volatile heterobimetallic precursor complex containing an alkaline earth metal. The knowledge of intimate mixing in heterobimetallic precursor complexes was extended by some novel chemistry to develop the first mixed Zn/Mg carbamato cluster complexes. These complexes were found to be excellent SSCVD precursors for ZnxMg1-xO thin films. Thin films were deposited with these precursors and exhibited a single preferred orientation, with a constant amount of magnesium throughout the bulk of the films. Investigation of the light emission properties of the films revealed significant improvements in the structural order commensurate with the incorporation of magnesium, and the formation of the ZnxMg1-xO alloy.

Identiferoai:union.ndltd.org:ADTP/282479
Date January 2006
CreatorsHill, Matthew Roland, Chemistry, Faculty of Science, UNSW
PublisherAwarded by:University of New South Wales. School of Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Matthew Roland Hill, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0016 seconds