Return to search

Formation of a cross-linked thin film with multiple functional groups using low energy hydrogen ions. / 以低能氫離子形成具多官能團的交聯聚合物薄膜 / Formation of a cross-linked thin film with multiple functional groups using low energy hydrogen ions. / Yi di neng qing li zi xing cheng ju duo guan neng tuan de jiao lian ju he wu bo mo

Lau Wai Cheung = 以低能氫離子形成具多官能團的交聯聚合物薄膜 / 劉慧璋. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / Lau Wai Cheung = Yi di neng qing li zi xing cheng ju duo guan neng tuan de jiao lian ju he wu bo mo / Liu Huizhang. / Abstract --- p.ii / Abstract (Chinese) --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Figures --- p.xi / List of Tables --- p.xv / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Polymer properties --- p.1 / Chapter 1.1.2 --- Polymer films --- p.2 / Chapter 1.2 --- Basic Idea of the study --- p.3 / Chapter 1.2.1 --- Previous works --- p.3 / Chapter 1.2.2 --- Related works --- p.4 / Chapter 1.2.3 --- Computational analysis --- p.5 / Chapter 1.2.4 --- Present studies --- p.7 / Chapter 1.3 --- Polymer surface modification techniques --- p.7 / Chapter 1.4 --- Preparation of cross-linked films --- p.9 / Chapter 1.4.1 --- Preparation of films --- p.9 / Chapter 1.4.2 --- Treatment of films --- p.10 / Chapter 1.4.3 --- Formation of the polymer network on films --- p.10 / Chapter 1.5 --- Analysis methods of films --- p.12 / Chapter 1.5.1 --- Film analysis by XPS --- p.12 / Chapter 1.5.2 --- Film analysis by AFM --- p.14 / Chapter 1.6 --- Polymer films with desired functionalities --- p.15 / Chapter 1.6.1 --- Film properties with desired functionalities --- p.15 / Chapter 1.6.2 --- Films with hydroxyl and carboxyl functionalities --- p.16 / Chapter 1.6.3 --- Films with mixed functionalities --- p.17 / Chapter 1.7 --- Goal of the present study --- p.17 / Chapter 1.7.1 --- Objective of this thesis --- p.17 / Chapter 1.7.2 --- Possible applications --- p.18 / Chapter 1.8 --- References for Chapter1 --- p.19 / Chapter CHAPTER 2 --- EXPERIMENTATION --- p.24 / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Sample preparation --- p.24 / Chapter 2.2.1 --- Preparation of polymer solutions --- p.24 / Chapter 2.2.2 --- Preparation of cleaned surfaces --- p.25 / Chapter 2.2.3 --- Spin coating --- p.26 / Chapter 2.2.4 --- Confirmation of Polymer network --- p.26 / Chapter 2.3 --- Low Energy Ion Beam (LEIB) system --- p.27 / Chapter 2.3.1 --- Principle --- p.27 / Chapter 2.3.2 --- Function of each component --- p.31 / Chapter 2.3.2.1 --- Ion source --- p.31 / Chapter 2.3.2.2 --- Einzel focusing lenses --- p.31 / Chapter 2.3.2.3 --- Deflectors --- p.32 / Chapter 2.3.2.4 --- Wien Filter --- p.32 / Chapter 2.3.2.5 --- Decelerator --- p.35 / Chapter 2.3.2.6 --- Target chamber and dose estimation --- p.35 / Chapter 2.4 --- X-ray Photoelectron Spectrometer (XPS) --- p.36 / Chapter 2.4.1 --- Principle --- p.36 / Chapter 2.4.2 --- Qualitative analysis --- p.37 / Chapter 2.4.2.1 --- Survey spectrum --- p.37 / Chapter 2.4.2.2 --- Core level spectrum --- p.38 / Chapter 2.4.2.3 --- Valence band spectrum --- p.38 / Chapter 2.4.2.4 --- Line shifts --- p.39 / Chapter 2.4.2.5 --- Lineshapes --- p.39 / Chapter 2.4.3 --- Quantitative Analysis --- p.40 / Chapter 2.4.3.1 --- Atomic concentration --- p.40 / Chapter 2.4.3.2 --- Layer thickness --- p.40 / Chapter 2.4.3.3 --- Curve fitting --- p.41 / Chapter 2.5 --- Ultrahigh Vacuum (UHV) System --- p.42 / Chapter 2.6 --- Other instruments --- p.42 / Chapter 2.7 --- References for Chapter2 --- p.43 / Chapter CHAPTER 3 --- POLY (ACRYLIC ACID) BOMBARDMENT BY LOW ENERGY H+ IONS --- p.45 / Chapter 3.1 --- Basic modeling and analysis method --- p.45 / Chapter 3.1.1 --- Peak fitting before bombardment --- p.45 / Chapter 3.1.2 --- Analysis of PVA surface after bombardment --- p.47 / Chapter 3.1.2.1 --- Peak fitting after bombardment --- p.47 / Chapter 3.1.2.2 --- Mechanism of PAA during bombardment --- p.48 / Chapter 3.1.2.3 --- Identification of the new component after bombardment --- p.50 / Chapter 3.2 --- Surface reaction with impact energy of 10 eV --- p.52 / Chapter 3.2.1 --- Cross-linking with different doses --- p.52 / Chapter 3.2.2 --- Effect of surface functionality with different ion doses --- p.57 / Chapter 3.3 --- Surface reaction with different impact energies --- p.59 / Chapter 3.3.1 --- Cross-linking with different impact energies --- p.59 / Chapter 3.3.2 --- Effect on surface functionality with different impact energies --- p.64 / Chapter 3.4 --- Surface reaction with impact energy of 1 eV --- p.66 / Chapter 3.4.1 --- Formation of a cross-linked polymer network using PAA --- p.66 / Chapter 3.4.2 --- Effect of surface functionality with different ion doses --- p.68 / Chapter 3.5 --- Chapter summary --- p.70 / Chapter 3.6 --- References for Chapter3 --- p.71 / Chapter CHAPTER 4 --- THE MECHANISM OF POLY (ACRYLIC ACID) BOMBARDMENT --- p.72 / Chapter 4.1 --- Surface reaction of PAA after bombardment --- p.72 / Chapter 4.1.1 --- Introduction --- p.72 / Chapter 4.1.2 --- Formation of ester group --- p.73 / Chapter 4.1.3 --- Loss of carbon dioxide --- p.73 / Chapter 4.1.4 --- Regeneration of carboxylic acid --- p.74 / Chapter 4.2 --- Analysis of the surface after bombardment --- p.74 / Chapter 4.2.1 --- Loss of oxygen --- p.74 / Chapter 4.2.2 --- Remaining un-reacted carboxyl acid --- p.75 / Chapter 4.3 --- Chapter summary --- p.80 / Chapter 4.4 --- References for Chapter4 --- p.81 / Chapter CHAPTER 5 --- POLY (VINYL ALCOHOL) BOMBARDMENT AND MECHANISM BY LOW ENERGY H+ IONS --- p.82 / Chapter 5.1 --- Basic modeling and analysis method --- p.82 / Chapter 5.1.1 --- Peak fitting before bombardment --- p.82 / Chapter 5.1.2 --- Analysis of PVA surface after bombardment --- p.84 / Chapter 5.1.2.1 --- Peak fitting after bombardment --- p.84 / Chapter 5.1.2.2 --- Mechanism of PVA during bombardment --- p.85 / Chapter 5.1.2.3 --- Identification of the new component after bombardment --- p.86 / Chapter 5.2 --- Surface reaction of PVA after bombardment --- p.88 / Chapter 5.2.1 --- Formation of a cross-linked polymer network using PVA --- p.88 / Chapter 5.2.2 --- Effect of dosage on the surface functionality of PVA at 10eV bombardment --- p.89 / Chapter 5.2.3 --- Remaining un-reacted hydroxyl group --- p.92 / Chapter 5.3 --- Chapter summary --- p.96 / Chapter 5.4 --- References for Chapter5 --- p.97 / Chapter CHAPTER 6 --- CONTROLLED FABRICATION OF POLYMER THIN FILMS WITH MULTIPLE FUNCTIONAL GROUPS --- p.98 / Chapter 6.1 --- Introduction --- p.98 / Chapter 6.2 --- Hydrogen bonding effect --- p.99 / Chapter 6.3 --- Analysis of mixed PVA and PAA before bombardment --- p.101 / Chapter 6.2.1 --- Peak fitting before bombardment --- p.101 / Chapter 6.2.2 --- Quantitative analysis before bombardment --- p.103 / Chapter 6.4 --- Analysis of mixed PVA and PAA after bombardment --- p.104 / Chapter 6.4.1 --- Peak fitting after bombardment --- p.104 / Quantitative analysis after bombardment --- p.107 / Chapter 6.4 --- Chapter summary --- p.110 / Chapter CHAPTER 7 --- CONCLUSION --- p.111 / Chapter 7.1 --- Summary --- p.111 / Chapter 7.2 --- Future works --- p.112

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324595
Date January 2004
ContributorsLau, Wai Cheung., Chinese University of Hong Kong Graduate School. Division of Chemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xv, 112 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds