Return to search

Crack propagation modeling using Peridynamic theory

Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling- irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622515
Date01 April 2016
CreatorsHafezi, M. H., Alebrahim, R., Kundu, T.
ContributorsUniv Arizona, Dept Civil Engn & Engn Mech, Univ. of Arizona Tucson (United States), Univ. Kebangsaan Malaysia (Malaysia), Univ. of Arizona Tucson (United States)
PublisherSPIE-INT SOC OPTICAL ENGINEERING
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016 SPIE
Relationhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2219487

Page generated in 0.0022 seconds