Return to search

The Role of Alginate in the Inhibition of Macrophage Phagocytosis of Mucoid Pseudomonas aeruginosa

During colonization of the cystic fibrosis airway Pseudomonas aeruginosa converts from non-mucoid to a mucoid phenotype, characterized by the production of the exopolysaccharide alginate. Alginate production has been shown to enhance survival by promoting biofilm formation, evading complement killing, and resisting phagocytosis. The mechanism by which alginate protects P. aeruginosa from phagocytosis is unclear. To investigate the role of alginate in the inhibition of phagocytosis, a human monocytic cell line (THP-1) and a murine alveolar macrophage cell line (MH-S) were used to determine the effects of alginate on macrophage binding, signaling, and phagocytosis. Phagocytosis assays using the mucoid cystic fibrosis clinical isolate FRD1, and its non-mucoid isogenic algD mutant FRD1131, revealed that alginate inhibits opsonic and non-opsonic phagocytosis. The inhibitory effect of alginate production is intrinsic to the bacteria as exogenous alginate was unable to protect non-mucoid FRD1131 from phagocytosis. Decreased binding of FRD1 compared to FRD1131 was also demonstrated by using the actin polymerization inhibitor cytochalasin D to inhibit phagocytosis. Furthermore, studies using blocking antibodies to CD11b and CD14 found that both of these receptors were important for the phagocytosis of FRD, and it is likely that these receptors are blocked by alginate. Alginate production by P. aeruginosa may reduce lipid raft formation, however, it was not found to affect acid sphingomyelinase activity, which is important for ceramide formation within the lipid raft. Decreased binding led to decreased signaling in macrophages demonstrated by reduction in level and alteration in kinetics of phosphorylation of AKT and ERK1/2 kinases. Signaling pathway inhibitors revealed that PI3K, but not MEK, activation was critical for phagocytosis of P. aeruginosa. Despite altered intracellular signaling in murine macrophages, both mucoid and non-mucoid P. aeruginosa induced similar levels of IL-8 and MIP-2 from human and murine macrophages, respectively. By understanding the pathways involved in mediating efficient phagocytosis of clinical isolates, it may be possible to develop a treatment to promote clearance by the resident alveolar macrophages. These experiments may serve as a model to evaluate the effectiveness of such treatments. This approach also provides valuable insight into previously unknown mechanisms of phagocytosis of P. aeruginosa.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3999
Date22 April 2013
CreatorsRowe, Warren, III
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0025 seconds