Return to search

Bidirectional Three-Phase AC-DC Power Conversion Using DC-DC Converters and a Three-Phase Unfolder

Strategic use of energy storage systems alleviates imbalance between energy generation and consumption. Battery storage of various chemistries is favorable for its relatively high energy density and high charge and discharge rates. Battery voltage is in dc, while the distribution of electricity is still predominantly in ac. To effectively harness the battery energy, a dc-ac inverter is required.
A conventional inverter contains two high-frequency switching stages. The battery-interfacing stage provides galvanic isolation and switches at high frequency to minimize the isolation transformer size. The grid-interfacing stage also operates at high frequency to obtain sinusoidal grid currents and the desired power. Negative consequences of high-frequency switching include increased switching loss and the generation of large voltage harmonics that require filtering.
This dissertation proposes an alternative two-stage inverter topology aimed at reducing converter size and weight. This is achieved by reducing the number of high-frequency switching stages and associated filter requirements. The grid-interfacing stage is operated at the line frequency, while only the battery-interfacing stage operates at high frequency to shape the line currents and control power flow. The line-frequency operation generates negligible switching loss and minimal current harmonics in the grid-interfacing stage. As a result, the required filter is reduced in size. Hardware designs are performed and compared between the conventional and proposed converters to quantify expected size reduction. Control methods are developed and verified in simulation and experiment to obtain high-quality line currents at all power factors.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7978
Date01 December 2017
CreatorsChen, Weilun Warren
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0021 seconds