Return to search

Understanding and Modeling Pathways to Thrombosis

This research will investigate techniques to create a sensor that is responsive to methane at 23°C. The approach will use the integration of a very thin film, which changes its resistive properties when methane gas is applied, deposited atop the surface of a piezoelectric substrate. An aluminum thin film interdigital transducer will launch a surface acoustic wave (SAW) that travels under the sensor’s gas-sensitive resistive thin film. The SAW/resistive film interaction changes the SAW amplitude, phase and delay. For this work, three films, tin dioxide (SnO2), zinc oxide (ZnO) and palladium (Pd) [1, 2] will be studied. Gas detection will be shown when combining ZnO and Pd, and, observable change in SAW propagation loss is measured when methane gas is present at the film.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2742
Date01 May 2015
CreatorsSeligson, John
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHIM 1990-2015

Page generated in 0.0025 seconds