Surface-induced osseointegration and antibacterial capability are very important criteria for the clinical success of titanium implants. To enhance these two criteria, an architectural hybrid system is constructed onto Ti-6Al-4V with a rough surface. First, thermal oxidation (TO), treatment with hydrogen peroxide (H2O2) and a mix of TO and H2O2 (Mixed) are used to modify the surface topography and chemistry of Ti-6Al-4V disks. Surface characterizations by the use of microscopes and spectroscopes indicate that TO can induce more favorable topography, roughness, wettability and hydroxyl group concentration on Ti-6Al-4V surfaces. Therefore, an alginate/chitosan LBL film that incorporates antibacterial nano-silver is bridged onto thermally oxidized Ti-6Al-4V alloy by mussel-inspired dopamine. The microscopies and spectrometers confirm that the hybrid system is successfully fabricated onto the Ti-6Al-4V surface while the sub-micron topography induced by TO is maintained. Bone marrow stem cell (BMSC) adhesion, proliferation and differentiation are up-regulated by the synergy of sub-micron surface produced by TO and alginate/chitosan LBL film. The incorporation of nano-silver into the hybrid system is demonstrated to inhibit the growth of Escherichia coli and Staphylococcus aureus, but not jeopardize the enhanced BMSC activities. Taken together, this thesis presents a promising strategy to fabricate novel Ti-6Al-4V implants with enhanced osseointegration and antibacterial capability.
Identifer | oai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/23666 |
Date | 26 June 2014 |
Creators | Wang, Ziyuan |
Contributors | Ojo, Olanrewaju (Mechanical Engineering) Xing, Malcolm (Mechanical Engineering), Richards, Norman (Mechanical Engineering) Yi, Ann (Pediatrics and Child Health) |
Source Sets | University of Manitoba Canada |
Detected Language | English |
Page generated in 0.002 seconds