In this research we produce a multi-layer Dye-Sensitized Solar Cell (DSSC) and formulate electrolyte to reduce electric leakage. In general, DSSC compound from FTO/ dense layer/ porous layer with Dye / electrolyte / counter Pt electrode. In this study, we use commercial dye Ruthenium N719, and own Lab-synthesized Coumarin series as dye. Ordinary DSSC use singular size TiO2 and mono-layer as active layer, but we demonstrate a multi-layer and multi-scale TiO2 particle of DSSC for increasing IPCE (incident photon-to- electron conversion efficiency). Compare with standard mono-layer DSSC, multi-layer DSSC has successful gotten promotion about 15%.
We use FTO (SnO2:F) as substrate, because after annealing it has low resistance, and it is better to anti-erosion from electrolyte compare with ITO. Ruthenium N719 absorb photon to generate exciton, that separate off into electron and hole. Electron deliver to the FTO substrate through TiO2. But electrons also can deliver to electrolyte result in electron leakage. In order to decrease electron leakage, one solution is to mixed electrolyte with some chemicals. For example, tert-butylpyridine (TBP), that can adhere to sphere of TiO2 reducing electron leakage and promote the IPCE. Because of liquid state of electrolyte is hard to seal DSSC. Our future work is making gel-state electrolyte and improving its efficiency.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0720109-155302 |
Date | 20 July 2009 |
Creators | Wang, Jhih-Hong |
Contributors | Yu-Kai Han, Ping-Tsung Huang, Hsin-Lung Chen, Wen-Yao Huang, Mei-Ying Chang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0720109-155302 |
Rights | restricted, Copyright information available at source archive |
Page generated in 0.0021 seconds