Return to search

Fotokatalitička aktivnost dopovanog titan(IV)-oksida u razgradnji nekih pesticida / Photocatalytic activity of doped titanium(IV)-oxide in degradation processes of some pesticides

<p>Kao &scaron;to je poznato, RS-2-(4-hlor-o-toliloksi)propionska kiselina (MCPP),&nbsp;(4-hlor-2-metilfenoksi)sirćetna kiselina (MCPA) i 3,6-dihlorpiridin-2-karboksilna kiselina &nbsp;(klopiralid) su herbicidi sa veoma &scaron;irokim spektrom dejstva, a pored toga su rastvorljivi u&nbsp;vodi, te&scaron;ko biorazgradljivi i prema literaturnim podacima su, nažalost, veoma često prisutni&nbsp;herbicidi u pijaćoj vodi. Proces heterogene fotokatalize uz primenu TiO<sub>2</sub>i UV zračenja se&nbsp;pokazao kao veoma pogodan način za njihovo uklanjanje iz vode. Međutim, zbog velikog&nbsp;energetskog procepa od 3,2 eV (anataze-oblik), odnosno, 3,0 eV (rutil-oblik), veoma mali&nbsp;udeo bliskih UV zraka iz sunčeve svetlosti (oko 3&minus;4%) biva iskori&scaron;ćen u toku&nbsp;fotokatalitičkog procesa, &scaron;to ukazuje na to da je TiO<sub>2&nbsp;</sub>praktično neaktivan u prisustvu&nbsp;sunčeve svetlosti. Na osnovu literaturnih podataka je zapaženo da postoji mogućnost&nbsp;fotorazgradnje pojedinih supstrata u prisustvu TiO<sub>2&nbsp;</sub>primenom vidljive svetlosti. Na&nbsp;primeru MCPP je ispitana aktivnost TiO<sub>2&nbsp;</sub>Degussa P25 kao fotokatalizatora u prisustvu&nbsp;vidljive svetlosti. Na osnovu refleksionih spektara je utvrđeno da MCPP adsorbovan na&nbsp;TiO<sub>2&nbsp;</sub>Degussa P25 apsorbuje vidljivi deo spektra (&lambda; &ge;400 nm). Nastali prelazni kompleks&nbsp;je potvrđen FTIR merenjima. Efikasnost TiO2Degussa P25 primenom vidljive svetlosti je&nbsp;upoređena sa sunčevim i UV zračenjem, kao i direktnom fotolizom u prisustvu pomenutih&nbsp;izvora zračenja. Brzina fotokatalitičke razgradnje MCPP primenom vidljive svetlosti iznosi&nbsp;0,86 &mu;mol dm<sup>&minus;3</sup>min<sup>&minus;1</sup>, &scaron;to je oko 4 puta brže u poređenju sa direktnom fotolizom. Nadalje&nbsp;je ustanovljena optimalna masena koncentracija katalizatora od oko 8 mg cm<sup>&minus;3</sup>, koja je&nbsp;znatno vi&scaron;a u poređenju sa primenom UV zračenja. Razlog je najverovatnije različit&nbsp;mehanizam fotorazgradnje koji se odvija primenom vidljivog i UV zračenja. Naime,&nbsp;prisustvo 2-metil-2-propanola (poznatog hvatača&nbsp;<sup>&bull;</sup>OH-radikala) praktično ne utiče na&nbsp;brzinu fotokatalitičke razgradnje MCPP p rimenom vidljive svetlosti, &scaron;to ukazuje da se&nbsp;mehanizam razgradnje MCPP primenom &nbsp;vidljive svetlosti ne odvija posredstvom&nbsp;<sup>&bull;</sup>OH-radikala, za razliku od onog uz primenu UV zračenja.</p><p>S obzirom da se katalizator TiO<sub>2&nbsp;</sub>Degussa P25 uz primenu vidljive svetlosti nije&nbsp;<br />pokazao kao naročito efikasan kada je u pitanju razgradnja sva tri herbicida i imajući u&nbsp;vidu da se u poslednje vreme iz razloga praktične primene sve vi&scaron;e pribegava procesu dopovanja TiO<sub>2&nbsp;</sub>različitim tipovima metala (alkalnih, zemnoalkalnih, prelaznih i dr.) i nemetala (halogenida, halkogenida i dr.), u okviru ove doktorske disertacije je ispitana aktivnost N-TiO<sub>2 </sub>(sintetisanih mokrim i suvim putem) i TiO<sub>2&nbsp;</sub>(rutil) dopovanog sa različitim količinama Fe<sup>3+</sup>-jona (0,13&minus;1,48 at.%) pri razgradnji herbicida MCPP i MCPA primenom vidljive svetlosti. Pored toga je ispitana efikasnost TiO<sub>2&nbsp;</sub>(anataze) takođe dopovanog sa različitim količinama Fe<sup>3+</sup>-jona (0,71&minus;1,80 at.%) na primeru MCPP.&nbsp;</p><p>Poredeći N-TiO<sub>2&nbsp;</sub>(sintetisan mokrim putem) i N-TiO<sub>2&nbsp;</sub>(sintetisani suvim putem), primećeno&nbsp;je da je u drugom slučaju efikasnost katalizatora veća oko 2 puta. Isto tako je zapažena u&nbsp;slučaju MCPP ne&scaron;to veća fotokatalitička aktivnost N-TiO<sub>2&nbsp;</sub>(sintetisani suvim putem) u&nbsp;poređenju sa TiO<sub>2&nbsp;</sub>(anataze). Kada je u pitanju MCPA aktivnost sva tri katalizatora je&nbsp;veoma slična. Pored toga je zapažena veća efikasnost N-TiO<sub>2&nbsp;</sub>(sintetisan mokrim putem) u&nbsp;poređenju sa TiO<sub>2&nbsp;</sub>Degussa P25 (oko 1,5 puta) i oko 5 puta u odnosu na direktnu fotolizu,&nbsp;dok su N-TiO<sub>2&nbsp;</sub>(sintetisani suvim putem) oko 3 puta efikasniji u poređenju sa TiO<sub>2&nbsp;</sub>Degussa P25 i oko 10 puta u &nbsp;poređenju sa direktnom fotolizom. Brzina solarne razgradnje&nbsp;je preko 100 puta manja nego primenom vidljivog i UV zračenja, &scaron;to je posledica različitih&nbsp;intenziteta pomenutih izvora ozračivanja i različitih uslova pri kojima je vr&scaron;ena razgradnja. &nbsp;Ustanovljena je optimalna masena koncentracija N-TiO<sub>2&nbsp;</sub>(sintetisan mokrim putem) od&nbsp;4 mg cm<sup>&minus;3</sup>.</p><p>Prilikom razgradnje MCPP i MCPA je nađeno da je brzina veća kada se kao&nbsp;katalizator &nbsp;koristi TiO<sub>2&nbsp;</sub>(rutil) u poređenju sa Fe-TiO<sub>2&nbsp;</sub>i da sa povećanjem količine Fe<sup>3+</sup>-jona fotokatalitička aktivnost uglavnom opada. Kada je kao fotokatalizator kori&scaron;ćen TiO<sub>2 &nbsp;</sub><br />(anataze) dopovan različitim količinama Fe<sup>3+</sup>-jona (od 0,71 do 1,80 at.%), razgradnja&nbsp;<br />MCPP je u svim slučajevima znatno sporija u odnosu na TiO<sub>2&nbsp;</sub>(anataze).</p><p>S obzirom da su prema literaturnim podacima kinetika i mehanizam fotokatalitičke&nbsp;<br />razgradnje klopiralida nepoznati, ispitana je njegova stabilnost pri različitim&nbsp;eksperimentalnim uslovima. Tokom ispitivanja uticaja pH kako u prisustvu, tako i u&nbsp;odsustvu dnevne svetlosti u intervalu pH od 1,0&minus;9,0, nađeno je da ni u jednom slučaju ne&nbsp;dolazi do razgradnje supstrata u periodu od sedam meseci koliko je proces praćen. Takođe&nbsp;je ispitana kinetika fotokatalitičke razgradnje klopiralida primenom UV i vidljivog&nbsp;zračenja u prisustvu TiO<sub>2&nbsp;</sub>Degussa P25, kao i direktna fotoliza primenom oba izvora&nbsp;zračenja. Nađeno je da je brzina fotokatalitičke razgradnje primenom UV zračenja veća&nbsp;oko 5 puta u odnosu na direktnu fotolizu. Za praćenje toka fotokatalitičke razgradnje&nbsp;klopiralida je izabrana pH-vrednost od 3,2. Nadalje je zapaženo da se u ispitivanom opsegu početnih koncentracija supstrata (0,5&ndash;3,0 mmol dm<sup>&minus;3</sup>) kinetika fotokatalitičke razgradnje klopiralida može opisati pseudo-prvim redom. Pri ispitivanju uticaja masene koncentracije katalizatora (0,5&ndash;8 mg cm<sup>&minus;3</sup>) na brzinu razgradnje klopiralida, ustanovljena je optimalna masena koncentracija primenjenog fotokatalizatora od oko 4 mg cm<sup>&minus;3</sup>. Izračunata ukupna &nbsp;prividna energija aktivacije iznosi 7,74 kJ mol<sup>&minus;1</sup>. Pored toga, prisustvo kiseonika ubrzava reakciju 2 puta, dok dodatak elektron-akceptora kao &scaron;to su (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, H<sub>2</sub>O<sub>2&nbsp;</sub>i KBrO<sub>3&nbsp;</sub>pokazuje značajan i različit efekat na kinetiku fotokatalitičke razgradnje klopiralida. Pri ispitivanju uticaja etanola, kao hvatača slobodnih radikala, nađeno je da se heterogena fotokataliza odvija uglavnom preko <sup>&bull;</sup>OH-radikala.</p><p>Na osnovu LC&ndash;MS/MS (ESI+) merenja ustanovljeno je prisustvo nekoliko&nbsp;intermedijera: 3,6-dihlor-piridin-2-ol, 3,6-dihlor hidroksipiridin-2-karboksilna kiselina i&nbsp;3,3&#39;,6,6&#39;-tetrahlor-2,4&#39;-bipiridin-2&#39;-karboksilna kiselina. Na osnovu identifikovanih&nbsp;intermedijera, kao i kinetičkih rezultata, predložen je mogućput mehanizma fotokatalitičke&nbsp;razgradnje klopiralida.</p><p>Prilikom ispitivanja uticaja strukture molekula na brzinu razgradnje, konstatovano&nbsp;<br />je da u slučaju klopiralida praktično ne dolazi do fotokatalitičke razgradnje u prisustvu&nbsp;TiO<sub>2&nbsp;</sub>(anataze) i N-TiO<sub>2&nbsp;</sub>(sintetisani suvim putem) uz primenu vidljive svetlosti, kao i u&nbsp;slučaju TiO<sub>2&nbsp;</sub>Degussa P25. Pored toga, primenom TiO<sub>2&nbsp;</sub>(rutil) i Fe-TiO<sub>2&nbsp;</sub>kao&nbsp;fotokatalizatora, sa povećanjem količine Fe<sup>3+</sup>-jona od 0,13 do 1,27 at.% raste brzina&nbsp;razgradnje klopiralida, ukazujući da strukturne osobine supstrata utiču na brzinu njihove&nbsp;razgradnje.</p> / <p>It is well known that RS-2-(4-chloro-o-tolyloxy)propionic acid (MCPP), (4-chloro-2- methyl-phenoxy)acetic acid (MCPA) and 3,6-dichloropyridine-2-carboxylic &nbsp;acid&nbsp;(clopyralid) are herbicides of wide activity spectrum. They are soluble in water, hardly&nbsp;biodegradable and, unfortunately, often present in drinking water.</p><p>Heterogeneous photocatalysis by application of TiO<sub>2&nbsp;</sub>and UV radiation proved to&nbsp;be very suitable for their removal from water. However, due toits large energy gap, i.e.&nbsp;3.2 &nbsp;eV (anatase-form) and 3.0 eV (rutile-form), a very small fraction of sunlight in the near&nbsp;UV range (about 3&ndash;4%) is used during photocatalytic process, which is an indication of&nbsp;TiO<sub>2&nbsp;</sub>inactivity in the presence of this light source. Some literature data report on the&nbsp;possibility of photodegradation of certain substrates by visible light in the presence of&nbsp;TiO<sub>2</sub>. MCPP served as substrate for testing TiO<sub>2&nbsp;</sub>Degussa P25 &nbsp;photocatalytic activity in the&nbsp;presence of visible light. On the basis of reflection spectra it was established that MCPP&nbsp;adsorbed on TiO<sub>2&nbsp;</sub>Degussa P25 was absorbing visible spectrum radiation (&lambda; &ge;400 nm).&nbsp;The existence of thus formed &nbsp;charge-transfer complex was confirmed with FTIR analysis.&nbsp;The efficiency of &nbsp;TiO<sub>2&nbsp;</sub>Degussa P25 with application of visible light was compared to&nbsp;sunlight and UV radiation, as well to directphotolysis in the presence of these light&nbsp;sources. The rate of MCPP photocatalytic degradation by means of visible light is&nbsp;0.86 &mu;mol dm<sup>&minus;3&nbsp;</sup>min<sup>&minus;1</sup>, which is about 4 times faster than direct photolysis. In addition, the&nbsp;optimal &nbsp;catalyst concentration of about 8 mg cm<sup>&minus;3</sup>, much higher than using UV radiation,&nbsp;<br />was established. The reason is, probably, a different mechanism of &nbsp;hotodegradation &nbsp;in the&nbsp;presence of visible and UV irradiation. Namely, the presence of 2-methyl-2-propanol&nbsp;(well-known&nbsp;<sup>&bull;</sup>OH radical scavenger) has practicallyno effect on the rate of &nbsp;MCPP&nbsp;photocatalytic degradation using visible light, which points that this degradation&nbsp;mechanism does not involve&nbsp;<sup>&bull;</sup>OH radicals, in contrast to that established &nbsp;for UV radiation.</p><p>Since the catalyst TiO<sub>2&nbsp;</sub>Degussa P25 with application of visible light was not very&nbsp;<br />efficient in degradation of all three herbicidesand in view that nowadays is very &nbsp;popular&nbsp;doping process of TiO<sub>2</sub> with different types of metals (alkali, alkaline-earth, transition, etc.)&nbsp;and non-metals (halogen, chalcogen, etc.), in the scope of this Ph.D. &nbsp;thesis activities of N-TiO<sub>2&nbsp;</sub>(synthesized by wet and dry procedure) and TiO<sub>2&nbsp;</sub>(rutile) doped with various amounts&nbsp;of Fe<sup>3+&nbsp;</sup>(0.13&ndash;1.48 at.%) in degradation processes of &nbsp;herbicides MCPP and MCPA using&nbsp;visible light were studied. In addition, the efficiency of TiO<sub>2&nbsp;</sub>(anatase) doped with various&nbsp;amounts of Fe<sup>3+&nbsp;</sup>(0.71&ndash;1.80 at.%) was also tested for MCPP degradation. When comparing&nbsp;N-TiO<sub>2&nbsp;</sub>(synthesized by wet procedure) and N-TiO<sub>2</sub> (dry procedure), it was observed that&nbsp;in the latter case the catalyst efficiency was about two times higher. In this case for MCPP&nbsp;was also observed somewhat higher photocatalytic activity of N-TiO<sub>2</sub> (synthesized by dry&nbsp;procedure) in comparison with TiO<sub>2</sub>. When activities of all three catalysts towards MCPA&nbsp;are compared, the results are very alike. In addition, higher efficiency of N-TiO<sub>2 &nbsp;</sub>(wet&nbsp;procedure) comparing to TiO<sub>2&nbsp;</sub>Degussa P25 (about 1.5 times) and about 5 times in&nbsp;comparison to direct photolysis were recorded, while N-TiO<sub>2</sub> (dry procedure) was about 3&nbsp;times more efficient than TiO<sub>2&nbsp;</sub>Degussa P25 and about 10 times in comparison with direct&nbsp;photolysis. The rate of solar degradation is about 100 times lower than by application of&nbsp;UV and visible radiation, as a consequence of various intensities of the mentioned light&nbsp;sources and different conditions of photodegradation. An optimal concentration of N-TiO<sub>2</sub>&nbsp;(wet procedure) of 4 mg cm<sup>&minus;3</sup><br />&nbsp;was established.</p><p>During degradation of MCPP and MCPA it was observed that the rate is higher if&nbsp;TiO<sub>2 </sub>(rutile) was applied comparing to Fe-TiO<sub>2&nbsp;</sub>and with increasing amount of Fe<sup>3+&nbsp;</sup>photocatalytic activity mostly decreases. When TiO<sub>2</sub> (anatase) doped with various amounts&nbsp;of Fe<sup>3+&nbsp;</sup>(0.71 to 1.80 at.%) was applied for MCPP degradation, the process was much&nbsp;slower than with undoped catalyst.</p><p>Since we have not found relevant literature data on kinetics and mechanism of&nbsp;photocatalytic degradation of clopyralid, its stability in different experimental conditions&nbsp;was tested. In investigating of influences of pH (1.0&ndash;9.0) both in presence and in absence&nbsp;of daylight, in no cases decomposition was observed during seven months experiments.&nbsp;Also, the kinetics of photocatalytic degradation of clopyralid using UV and visible&nbsp;irradiation in the presence of TiO<sub>2&nbsp;</sub>Degussa P25 and in direct photolysis by application of&nbsp;both irradiation sources was studied. It was found that the &nbsp;rate of photocatalytic&nbsp;decomposition using UV radiation was 5 times higher comparing to direct photolysis. For&nbsp;clopyralid photocatalytic monitoring a pH value of &nbsp;3.2 was chosen. In addition, in the investigated concentration range (0.5&ndash;3.0 mmol &nbsp;dm<sup>&minus;3</sup>) the photocatalytic degradation kinetics of clopyralid in the first stage of the reaction follows approximately a pseudo-first kinetic order. In investigation of influence of catalyst concentration (0.5&ndash;8 mg cm<sup>&minus;3</sup>) on the rate of clopyralid degradation the highest reaction rate was observed at 4 mg cm<sup>&minus;3&nbsp;</sup>of catalyst concentration The apparent activation energy of the reaction being 7.74 kJ mol<sup>&minus;1</sup>. The absence of molecular oxygen resulted in a significant decrease (about 2 times) in the rate of clopyralid photodegradation. The effect of the presence of (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, H<sub>2</sub>O<sub>2&nbsp;</sub>and KBrO<sub>3</sub>, acting as electron acceptors along with molecular oxygen affects clopyralid photocatalytic degradation considerably and indifferent ways. By studying the effect of ethanol as a hydroxyl radical scavenger it was shown that the heterogeneous catalysis takes place mainly via <sup>&bull;</sup>OH radicals.</p><p>LC&minus;MS/MS (ESI+) monitoring of the process showed that several pyridine-containing intermediates are formed: 3,6-dichloropyridin-2-ol, 3,6-dichloro&nbsp;hydroxypyridine-2-carboxylic acid and 3,3&#39;,6,6&#39;-tetrachloro-2,4&#39;-bipyridine-2-carboxylic&nbsp;acid. Based on the identified intermediates and overall kinetic results, a probable&nbsp;photocatalytic degradation mechanism was proposed.&nbsp;</p><p>Finally, in the case of clopyralid it was established that practically no degradation&nbsp;<br />occurs in the presence of TiO<sub>2&nbsp;</sub>(anatase) and N-TiO<sub>2</sub> (dry procedure) with visible light &nbsp;and&nbsp;also with TiO<sub>2&nbsp;</sub>Degussa P25. Besides of that, by using TiO<sub>2&nbsp;</sub>(rutile) and Fe-TiO<sub>2&nbsp;</sub>as&nbsp;photocatalysts it was noted that increasing the concentration of Fe<sup>3+&nbsp;</sup>from 0.13 to 1.27 at.%&nbsp;comes to increasing photodegradation rate of clopyralid. Results indicate that differences&nbsp;in molecular structure of chosen compound, influence obtained photocatalytic activity to a&nbsp;great extent.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)16610
Date08 July 2009
CreatorsŠojić Daniela
ContributorsAbramović Biljana, Jovanović Ljiljana, Čomor Mirjana
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageSerbian
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.004 seconds