Return to search

Late glacial to Holocene climate and vegetation changes on the Tibetan Plateau inferred from fossil pollen records in lacustrine sediments

The past climate in central Asia, and especially on the Tibetan Plateau (TP), is of great importance for an understanding of global climate processes and for predicting the future climate. As a major influence on the climate in this region, the Asian Summer Monsoon (ASM) and its evolutionary history are of vital importance for accurate predictions. However, neither the evolutionary pattern of the summer monsoon nor the driving mechanisms behind it are yet clearly understood.
For this research, I first synthesized previously published Late Glacial to Holocene climatic records from monsoonal central Asia in order to extract the general climate signals and the associated summer monsoon intensities. New climate and vegetation sequences were then established using improved quantitative methods, focusing on fossil pollen records recovered from Tibetan lakes and also incorporating new modern datasets. The pollen-vegetation and vegetation-climate relationships on the TP were also evaluated in order to achieve a better understanding of fossil pollen records.
The synthesis of previously published moisture-related palaeoclimate records in monsoonal central Asia revealed generally different temporal patterns for the two monsoonal subsystems, i.e. the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM). The ISM appears to have experienced maximum wet conditions during the early Holocene, while many records from the area affected by the EASM indicate relatively dry conditions at that time, particularly in north-central China where the maximum moisture levels occurred during the middle Holocene. A detailed consideration of possible driving factors affecting the summer monsoon, including summer solar insolation and sea surface temperatures, revealed that the ISM was primarily driven by variations in northern hemisphere solar insolation, and that the EASM may have been constrained by the ISM resulting in asynchronous patterns of evolution for these two subsystems. This hypothesis is further supported by modern monsoon indices estimated using the NCEP/NCAR Reanalysis data from the last 50 years, which indicate a significant negative correlation between the two summer monsoon subsystems. By analogy with the early Holocene, intensification of the ISM during coming decades could lead to increased aridification elsewhere as a result of the asynchronous nature of the monsoon subsystems, as can already be observed in the meteorological data from the last 15 years.
A quantitative climate reconstruction using fossil pollen records was achieved through analysis of sediment core recovered from Lake Donggi Cona (in the north-eastern part of the TP) which has been dated back to the Last Glacial Maximum (LGM). A new data-set of modern pollen collected from large lakes in arid to semi-arid regions of central Asia is also presented herein. The concept of "pollen source area" was introduced to modern climate calibration based on pollen from large lakes, and was applied to the fossil pollen sequence from Lake Donggi Cona. Extremely dry conditions were found to have dominated the LGM, and a subsequent gradually increasing trend in moisture during the Late Glacial period was terminated by an abrupt reversion to a dry phase that lasted for about 1000 years and coincided with the first Heinrich Event of the northern Atlantic region. Subsequent periods corresponding to the warm Bølling-Allerød period and the Younger Dryas cold event were followed by moist conditions during the early Holocene, with annual precipitation of up to about 400 mm. A slightly drier trend after 9 cal ka BP was then followed by a second wet phase during the middle Holocene that lasted until 4.5 cal ka BP. Relatively steady conditions with only slight fluctuations then dominated the late Holocene, resulting in the present climatic conditions.
In order to investigate the relationship between vegetation and climate, temporal variations in the possible driving factors for vegetation change on the northern TP were examined using a high resolution late Holocene pollen record from Lake Kusai. Moving-window Redundancy Analyses (RDAs) were used to evaluate the correlations between pollen assemblages and individual sedimentary proxies. These analyses have revealed frequent fluctuations in the relative abundances of alpine steppe and alpine desert components, and in particular a decrease in the total vegetation cover at around 1500 cal a BP. The climate was found to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, after the 1500 cal a BP threshold in vegetation cover was crossed the vegetation appears to have been affected more by extreme events such as dust storms or fluvial erosion than by the general climatic trends. In addition, pollen spectra over the last 600 years have been revealed by Procrustes analysis to be significantly different from those recovered from older samples, which is attributed to an increased human impact that resulted in unprecedented changes to the composition of the vegetation.
Theoretical models that have been developed and widely applied to the European area (i.e. the Extended R-Value (ERV) model and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model) have been applied to the high alpine TP ecosystems in order to investigate the pollen-vegetation relationships, as well as for quantitative reconstructions of vegetation abundance. The modern pollen–vegetation relationships for four common pollen species on the TP have been investigated using Poaceae as the reference taxa. The ERV Submodel 2 yielded relatively high PPEs for the steppe and desert taxa (Artemisia Chenopodiaceae), and low PPEs for the Cyperaceae that are characteristic of the alpine Kobresia meadows. The plant abundances on the central and north-eastern TP were quantified by applying these PPEs to four post-Late Glacial fossil pollen sequences. The reconstructed vegetation assemblages for the four pollen sequences always yielded smaller compositional species turnovers than suggested by the pollen spectra, indicating that the strength of the previously-reported vegetation changes may therefore have been overestimated.
In summary, the key findings of this thesis are that (a) the two ASM subsystems show asynchronous patterns during both the Holocene and modern time periods, (b) fossil pollen records from large lakes reflect regional signals for which the pollen source areas need to be taken into account, (c) climate is not always the main driver for vegetation change, and (d) previously reported vegetation changes on the TP may have been overestimated because they ignored inter-species variations in pollen productivity. / Das Paläoklima in Zentralasien, besonders in der Hochebene von Tibet (HT), ist von großer Bedeutung um globale Klimaprozesse zu verstehen und mögliche Voraussagung für die zukunft zu treffen. Als wichtigstes Klimaphänomen nehmen der asiatische Sommermonsun (ASM) und seine Entwicklungsgeschichte eine Schlüsselposition ein. Dennoch sind derzeit weder das Entwicklungsschema noch der antreibende Vorgang ausreichend verstanden. Dies gilt insbesondere für das Holozän, für welches große Kimaschwankungen und regionale Diskrepanzen weithin belegt sind.
Deshalb habe ich zuerst holozäne Klimadaten zusammengefasst. Bereits veröffentlichte Publikationen aus den Monsungebieten Zentralasiens dienten als Grundlage, um die wichtigsten Klimasignale und die zugehörigen Intensitäten des Sommermonsuns heraus zu arbeiten. Anhand von Pollensequenzen aus tibetischen Seen erzeugte ich neue Klima- und Vegetationssequenzen, welche auf verbesserten quantitativen Methoden und rezenten Datensätzen beruhen. Außerdem wurden die Verhältnisse Pollen-Vegetation und Vegetation-Klima bewertet, um Schlussfolgerungen fossiler Pollensequenzen zu verbessern.
Die Zusammenfassung der zuvor veröffentlichten, niederschlagsbezogenen Paläoklimadaten im Monsungebiet Zentralasiens ergab generell unterschiedliche Muster für die zwei Teilsysteme des ASMs, den Indischen Sommermonsun (ISM) und den Ostasiatischen Sommermonsun (OASM). Der ISM weist maximale feuchte Bedingungen während des frühen Holozöns auf, während viele Datensätze aus dem Gebiet des OASMs einen relativ trockenen Zustand anzeigen, besonders im nördlichen Zentralchina, wo maximale Niederschläge während des mittleren Holozäns registriert wurden. Genaue Betrachtungen der Antriebsfaktoren des Sommermonsuns ergaben, dass der ISM hauptsächlich durch Veränderungen der Sonneneinstrahlung auf der Nordhemisphäre angetrieben wird, während der OASM potentiell durch den ISM beherrscht wird - dies führt zu asynchronen Entwicklungen. Diese Hypothese wird durch rezente Monsunindizes gestützt. Sie weisen eine signifikant negative Korrelation zwischen den beiden Sommermonsun-Teilsystemen auf.
Für die quantitative Klimarekonstruktion von Pollensequenzen wurde ein Sedimentkern aus dem See Donggi Cona im Nordosten der HT analysiert, der bis zum letzten glazialen Maximum (LGM) zurückdatiert wurde. Aufgrund der Tatsache, dass Donggi Cona ein relativ großer See ist, wird hiermit ein neuer Pollen-Klima-Kalibrierungsdatensatz auf Grundlage großer Seen in ariden und semiariden Regionen Zentralasiens vorgelegt. Das Konzept des Pollenherkunftsgebietes wurde in diese rezente, pollenbasierte Klimakalibrierung eingebracht und auf die Pollensequenz von Donggi Cona angewendet. Die Auswertung ergab, dass extrem trockene Bedingungen während des LGM (ca. 100 mm/yr) vorherrschten. Ein ansteigender Trend von Niederschlägen während des späten Glazials wurde durch einen abrupten Rückgang zu einer etwa 1000-jährigen Trockenphase beendet, welche mit Heinrich-Ereignis 1 in der Nordatlantik-Region übereinstimmt. Danach entsprechen die Klimaperioden dem warmen Bølling/Allerød und dem Kälteereignis der Jüngeren Dryas. Anschließend herrschten feuchte Bedingungen im frühen Holozän (bis zu 400 mm/yr). Ein etwas trockenerer Trend nach dem Holozänen Klimaoptimum wurde dann von einer zweiten Feuchtphase abgelöst, welche bis 4,5 cal. ka vor heute andauerte. Relativ gleichmäßige Bedingungen dominierten das späte Holozän bis heute. Die Klimadynamik seit dem LGM wurde vor allem durch Entgletscherung und Intensitätsschwankungen des ASM bestimmt.
Bei der Betrachtung des Vegetation-Klima-Verhältnisses habe ich die zeitlichen Variationen der bestimmenden Faktoren hinsichtlich der Vegetationsdynamik auf der nördlichen HT untersucht. Dabei wurden hochauflösende holozäne Pollendaten des Kusai-Sees verwendet. Eine Redundanzanalyse (RDA) wurde angewendet um die Korrelation zwischen Pollenvergesellschaftungen und individuellen sedimentären Klimaanzeigern als auch die damit verbundene Signifikanz zu bewerten. Es stellte sich heraus, dass das Klima einen wichtigen Einfluss auf den Veränderungen in der Vegetation besaß, wenn die Bedingungen relativ warm und feucht waren. Trotzdem scheint es, dass, dass die Vegetation bei zu geringer Bedeckung stärker durch Extremereignisse wie Staubstürme oder fluviale Erosion beeinflusst wurde. Pollenspektren der vergangen 600 Jahre erwiesen sich als signifikant unterschiedlich verglichen mit den älterer Proben, was auf verstärkten anthropogenen Einfluss hindeutet. Dieser resultierte in einem beispiellosen Wandel in der Zusammensetzung der Vegetation.
In Hinsicht auf das Pollen-Vegetation-Verhältnis und der quantitativen Rekonstruktion der Vegetationshäufigkeit habe ich theoretische Modelle, welche für europäische Regionen entwickelt und weithin angewendet wurden, respektive die Modelle "Extended R-Value" (ERV) sowie "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS), auf die hochalpinen Ökosysteme der HT überführt. Dafür wurden rezente Pollen-Vegetations-Verhältnisse von vier weit verbreiteten Pollen-Arten der HT überprüft. Poaceae wurden als Referenztaxa verwendet. Bei der Anwendung dieser Verhältnisse auf vier Pollensequenzen, welche die Paläoumweltbedingungen seit dem letzten Glazial widerspiegeln, wurden die Häufigkeiten von Pflanzen auf der zentralen und nordöstlichen HT quantifiziert. Anteile von Artimisia und Chenopodiaceae waren dabei im Vergleich zu ihren ursprünglichen Pollenprozenten deutlich verringert. Cyperaceae hingegen wies eine relative Zunahme in dieser Vegetationsrekonstruktion auf. Die rekonstruierten Vegetationsvergesellschaftungen an den Standorten der vier Pollensequenzen ergaben stets geringere Umwälzungen in der Artenzusammensetzung, als durch die Pollenspektren zu vermuten gewesen wäre. Dies kann ein Hinweis darauf sein, dass die Intensität der bislang angenommenen Vegetationsveränderungen überschätzt worden ist.
Zusammengefasst sind die Hauptresultate dieser Dissertation, dass (a) die zwei ASM Teilsysteme asynchrone Muster während des Holozäns und heute aufweisen, dass (b) fossile Pollensequenzen großer Seen regionale Klimasignale widerspiegeln sofern die Herkunftsgebiete der Pollen berücksichtigt werden, dass (c) Klima nicht immer der Haupteinflussfaktor für Vegetationswandel ist und dass (d) das Ausmaß von Vegetationsveränderungen in zuvor veröffentlichten Studien auf der Hochebene von Tibet überschätzt worden sein kann, weil Diskrepanzen der Pollenproduktivität zwischen den Arten nicht einbezogen wurden.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6315
Date January 2011
CreatorsWang, Yongbo
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Erd- und Umweltwissenschaften
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0149 seconds