Return to search

Computation of a Virtual Tide Corrector to Support Vertical Adjustment of Autonomous Underwater Vehicle Multibeam Sonar Data

One challenge for Autonomous Underwater Vehicle (AUV) multibeam surveying is the limited ability to assess internal vertical agreement rapidly and reliably. Applying an external ellipsoid reference to AUV multibeam data would allow for field comparisons. A method is established to merge ellipsoid height (EH) data collected by a surface vessel in close proximity to the AUV. The method is demonstrated over multiple collection missions in two separate areas. Virtual tide corrector values are derived using EH data collected by a boat and a measured ellipsoid to chart datum separation distance. Those values are compared to measurements by a traditional tide gauge installed nearby. Results from the method had a mean difference of 6 centimeters with respect to conventional data and had a mean total propagated uncertainty of 15 centimeters at the 95% confidence interval. Methodologies are examined to characterize their accuracies and uncertainty contribution to overall vertical correction.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3142
Date18 December 2015
CreatorsHaselmaier, Lawrence H
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.002 seconds