The tyrosine kinase receptor Tie-2 is expressed on the surface of endothelial cells and is necessary for angiogenesis and vascular stability. To date, the best characterized ligands for Tie-2 are Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2). Ang-1 has been identified as the main activating ligand for Tie-2 while the role of Ang-2 has been controversial since its discovery; some studies reported Ang-2 as a Tie-2 antagonist while others described Ang-2 as a Tie-2 agonist.
The purpose of this thesis was to understand: (1) how the receptor Tie-2 is regulated by Ang-1 and Ang-2 in endothelial cells, (2) to compare the effects of Ang-1 and Ang-2, and (3) to determine the arrangement and distribution of Tie-2 in endothelial cells. The research presented in this thesis indicates that Tie-2 is arranged in variably sized clusters on the endothelial cell surface. Clusters of Tie-2 were expressed on all surfaces of cells: on the apical plasma membrane, on the tips of microvilli, and on the basolateral plasma membrane. When endothelial cells were stimulated with Ang-1, Tie-2 was rapidly internalized and degraded. Upon Ang-1 stimulation, Tie-2 localized to clathrin-coated pits on all surfaces of endothelial cells indicating that one pathway mediating Tie-2 internalization is through clathrin-coated pits. After activation of Tie-2, Ang-1 dissociates from the endothelial cell surface and accumulates in the surrounding medium. When experiments were repeated with Ang-2, it was discovered that Ang-2 induced all of the same effects on Tie-2 as Ang-1 but at a much reduced level and rate, indicating that Ang-2 likely functions as a partial agonist for Tie-2 in endothelial cells. / PhD
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/19174 |
Date | 01 March 2010 |
Creators | Bogdanovic, Elena |
Contributors | Dumont, Daniel, Medical Biophysics |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0015 seconds