Plans for construction of the tallest residential timber building has driven the Technical Research Institute of Sweden (SP), Linnaeus University, Växjö and more than ten interested companies to determine an appropriate design for the structure. This thesis presents a part of ongoing research regarding wind-induced vibration control to meet serviceability limit state (SLS) requirements. A parametric study was conducted on a 22-storey timber building with a CLT shear wall system utilizing mass, stiffness and damping as the main parameters in the dynamic domain. Results were assessed according to the Swedish Annex EKS 10 and Eurocode against ISO 10137 and ISO 6897 requirements. Increasing mass, stiffness and/or damping has a favorable impact. Combination scenarios present potential solutions for suppressing wind-induced vibrations as a result of higher efficiency in low-increased levels of mass and damping.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-57005 |
Date | January 2016 |
Creators | Al Haddad, Aiham Emil |
Publisher | Linnéuniversitetet, Institutionen för byggteknik (BY) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds