Return to search

Redes neurais dinÃmicas para prediÃÃo e modelagem nÃo-linear de sÃries temporais / Dynamic neural networks for nonlinear tools for time series prediction and modeling

Neste trabalho, redes neurais dinÃmicas sÃo avaliadas como modelos nÃo-lineares eficientes para prediÃÃo de sÃries temporais complexas. Entre as arquiteturas avaliadas estÃo as redes FTDNN, Elman e NARX. A capacidade preditiva destas redes sÃo testadas em tarefas de prediÃÃo de um-passo-adiante e mÃltiplos-passos-adiante. Para este fim, sÃo usadas as seguintes sÃries temporais: sÃrie laser caÃtico, sÃrie caÃtica Mackey-Glass, alÃm de sÃries de trÃfego de rede de computadores com caracterÃsticas auto-similares. O uso da rede NARX em prediÃÃo de sÃries temporais à uma contribuiÃÃo desta dissertaÃÃo. Esta rede possui uma arquitetura neural recorrente usada originalmente para identificaÃÃo entrada-saÃda de sistemas nÃo-lineares. A entrada da rede NARX à formada por duas janelas deslizantes (sliding time window), uma que desliza sobre o sinal de entrada e outra que desliza sobre sinal de saÃda. Quando aplicada para prediÃÃo caÃtica de sÃries temporais, a rede NARX à projetada geralmente como um modelo autoregressivo nÃolinear (NAR), eliminando a janela de atraso da saÃda. Neste trabalho, à proposta uma estratÃgia simples, porÃm eficiente, para permitir que a rede NARX explore inteiramente as janelas de tempo da entrada e da saÃda, a fim de melhorar sua capacidade preditiva. Os resultados obtidos mostram que a abordagem proposta tem desempenho superior ao desempenho apresentado por preditores baseados nas redes FTDNN e Elman.

Identiferoai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:1909
Date14 July 2006
CreatorsJosà Maria Pires de Menezes JÃnior
ContributorsGuilherme de Alencar Barreto, AdriÃo Duarte DÃria Neto, Paulo CÃsar Cortez, Danielo GonÃalves Gomes
PublisherUniversidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica, UFC, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0763 seconds