Return to search

Vertical Ground Motion Influence On Seismically Isolated &amp / Unisolated Bridges

In this study influences of vertical ground motion on seismically isolated bridges were investigated for seven different earthquake data. One assessment of bearing effect involves the calculation of vertical earthquake load on the seismically isolated bridges. This paper investigates the influence of vertical earthquake excitation on the response of briefly steel girder composite bridges (SCB) with and without seismic isolation through specifically selected earthquakes. In detail, the bridge is composed of 30m long three spans, concrete double piers at each axis supported by mat foundations with pile systems. At both end of the spans
there exists concrete abutments to support superstructure of the bridge. SCBs which were seismically isolated with nine commonly preferred different lead&amp / #8208 / rubber bearings (LRB) under each steel girder were analyzed. Then, the comparisons were made with a SCB without seismic isolation. Initially, a preliminary design was made and reasonable sections
for the bridge have been obtained. As a result of this, the steel girder bridge sections were checked with AASHTO provisions and analytical model was updated accordingly. Earthquake records were thought as the main loading sources. Hence both cases were exposed to tri&amp / #8208 / axial
earthquake loads in order to understand the effects under such circumstances. Seven near fault earthquake data were selected by considering possession of directivity. Several runs using the chosen earthquakes were performed in order to be able to derive satisfactory comparisons between different types of isolators. Analytical calculations were conducted using well known structural analysis software (SAS) SAP2000. Nonlinear time history analysis was performed using the analytical model of the bridge with and without seismic isolation. Response data collected from SAS was used to determine the vertical load on the piers and middle span midspan moment on the steel girders due to the vertical and horizontal component of excitation. Comparisons dealing with the effects of horizontal only and horizontal plus vertical earthquake loads were introduced.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12611785/index.pdf
Date01 April 2010
CreatorsReyhanogullari, Naim Eser
ContributorsAkyuz, Ugurhan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0026 seconds