Return to search

Depth images\' processing to improve the performance of sows through early detection of lameness and changes in body condition score / Processamento de imagens em profundidade para melhora do desempenho de matrizes suínas por meio da detecção precoce de claudicação e de alterações no escore de condição corporal

The observation, control and the maintenance of the physical condition of sows in acceptable levels are critical to maintain the animal welfare and production in appropriate standards. Lameness causes pain making locomotion difficult. However, lameness is a common disorder in sows that causes negative impacts in both welfare and production. Since the animals that demonstrate this problem, have a smaller number of born-alive piglets, fewer gestation per year and are removed from the herd at a younger age than the ideal. In addition, it is industry practice to limit feed sows to ensure that they remain at an ideal condition score. It is known that, during gestation, each sow should receive a different amount of food according to its body condition. Underweight animals have nutritional deficiency and lower number of piglets per litter. On the other hand, overweight sows have an abnormal development of mammary glands, reducing the amount of milk produced during lactation, causing economic losses. However, moving sows to group gestation makes it difficult to monitor condition score in gestating sows. Both the detection of lameness and the classification of body condition are currently assessed using subjective methods, which is time consuming and difficult to accurately complete. Therefore, the early recognition of animals that present physical condition outside the standards is important to prevent production losses caused by both the aggravation of the conditions presented and the impact on the animals\' welfare. The objective of this project is to obtain three characteristics (body condition score, mass and backfat thickness) through depth images, that proved to be effective on the acquisition of these features in other animals (boars and cows). The second objective is to develop a method for early detection of lameness using the kinematic approach, that has been generating good results and which difficulties have the potential to be reduced by using depth images instead of the method of reflective markers currently used. To predict body condition, a multiple linear regression was obtained using the minor axis of the ellipse fitted around sow\'s body, the width at shoulders, and the angle, of the last rib\'s curvature. To predict backfat, a multiple linear regression was performed using the height of last rib\'s curvature, the perimeter of sow\'s body, the major axis of the ellipse fitted around sow\'s body, the length from snout to rump, and the predicted body condition score. It was possible to obtain the body mass with a simple linear regression using the projected volume of the sows\' body. For lameness detection, three models presented the best accuracy (76.9%): linear discriminant analysis, fine 1-nearest neighbor, and weighted 10-nearest neighbors. The input variables used on the models were obtained from depth videos (number, time, and length of steps for each of the four regions analyzed - left and right shoulders and left and right hips; total walk time; and number of local maxima for head region). As a result of these studies, it has been demonstrated that a depth camera can be used to automate the weight, condition score, backfat thickness, and lameness acquisition/detection in gestating and lactating sows. / A observação, o controle e a manutenção das condições físicas de matrizes suínas em níveis aceitáveis são fundamentais para manter o bem-estar animal e a produção em padrões adequados. A claudicação causa dor e dificuldade de locomoção e, no entanto, é uma desordem comum em matrizes suínas que, além do impacto negativo no bem-estar, gera, também, grandes impactos na produção, uma vez que os animais que demonstram esse problema, apresentam um menor número de leitões nascidos vivos, menor número de partos por ano e são removidas do rebanho a uma idade mais jovem do que a ideal. Sabe-se, ainda, que, durante a gestação, cada matriz deve receber uma quantidade de ração diferenciada de acordo com sua condição corporal. Animais abaixo do peso apresentam deficiência nutricional e menor número de leitões nascidos por ninhada. Já as matrizes com excesso de peso apresentam um desenvolvimento anormal das glândulas mamárias, reduzindo a quantidade de leite produzida durante a lactação, acarretando em perdas econômicas. Tanto a detecção da claudicação quanto a classificação da condição corporal são feitos por meios subjetivos e dependentes da opinião pessoal do tratador, o que pode gerar divergências entre as classificações dadas por cada indivíduo. Destaca-se, portanto, a importância do reconhecimento precoce de animais que apresentam condições físicas fora dos padrões exigidos, visando a prevenção de perdas produtivas causadas tanto pelo agravamento das condições apresentadas quanto pelo grande impacto no bem-estar dos animais. Tendo-se isso em vista, o presente trabalho visou obter três características (escore de condição corporal, massa corporal e espessura de toucinho) por meio de imagens em profundidade, que se mostraram eficazes na obtenção dessas características em outros animais (suínos machos não- castrados e vacas leiteiras). Além disso, buscou-se desenvolver um método para a detecção precoce de claudicação em matrizes suínas, utilizando-se a abordagem da cinemática dos animais, que vem dando bons resultados e cujas dificuldades têm potencial para serem sanadas por meio do uso de imagens em profundidade em vez do método de marcadores reflexivos utilizado atualmente. Para predizer a condição corporal, uma regressão linear múltipla foi obtida usando o menor eixo da elipse ajustada ao redor do corpo da matriz suína, a largura dos ombros e o ângulo da curvatura da última costela. Para predizer a espessura de toucinho, foi realizada uma regressão linear múltipla usando a altura curvatura da última da costela, o perímetro do corpo da matriz, o maior eixo da elipse ajustada, o comprimento do focinho à cauda e o escore predito da condição corporal. Foi possível obter a massa corporal com uma regressão linear simples usando o volume projetado do corpo das matrizes. Para detecção de claudicação, três modelos apresentaram a melhor precisão (76,9%): análise discriminante linear, 1 vizinho mais próximo e 10 vizinhos mais próximos. As variáveis de entrada utilizadas nos modelos foram obtidas a partir de vídeos em profundidade (número, tempo e comprimento de passos para cada uma das quatro regiões analisadas-ombros esquerdo e direito e quadris esquerdo e direito; tempo total de caminhada e número de máximos locais para a região da cabeça). Como resultado desses estudos, observou-se que câmeras em profundidade podem ser utilizadas na automação de medidas de peso, condição corporal, espessura de toucinho e claudicação de matrizes suínas.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29082019-154917
Date07 June 2019
CreatorsCondotta, Isabella Cardoso Ferreira da Silva
ContributorsMiranda, Késia Oliveira da Silva
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.

Page generated in 0.0144 seconds