Return to search

Geochronology of Timor-Leste and seismo-tectonics of the southern Banda Arc

Arc–continent collision is a significant plate boundary process that results in crustal growth. Since the early stages of evolution are often obscured in mature orogens, more complete understanding of the processes involved in arc–continent collision require study of young, active collision settings. The Banda Arc presents an exceptional opportunity to study a young arc–continent collision zone. This thesis presents aspects of the geology and geochronology of Ataúro and the Aileu Complex of Timor-Leste, and the tectonics of the Banda Arc. / U–Pb dating of detrital zircons from the Aileu Complex by LA-ICPMS show major age modes at 270–440 Ma, 860–1240 Ma and 1460–1870 Ma. The youngest zircon populations indicate a maximum depositional age of 270 Ma. The detrital zircon age populations and evidence for juvenile sediments within the sequence favours a synorogenic setting of deposition of sediments sourced from an East Malaya – Indochina terrane. / Previous uncertainty in aspects of the cooling history for the Aileu Complex is resolved with 39Ar/40Ar geochronology of hornblende. Cooling ages of 6–10 Ma are established, with the highest metamorphic grade parts of the Complex yielding the older ages. Cooling ages of 10 Ma imply that metamorphism of the Aileu Complex must have commenced by at least ~12 Ma. Metamorphism at this time is attributed to an arc setting rather than the direct result of collision of the Australian continent with the Banda Arc, an interpretation consistent with the new provenance data. / Geological mapping of Ataúro, an island in the volcanic Banda Arc north of Timor, reveals a volcanic history of bi-modal subaqueous volcanism. 39Ar/40Ar geochronology of hornblende from dacitic lavas confirms that volcanism ceased by ~3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. / North of Timor, the near complete absence of intermediate depth seismicity beneath the inactive segment of the arc is attributed to a slab window that has opened in the collision zone and extends to 350 km below the surface. Differences in seismic moment release around this slab window indicate asymmetric rupture, propagating to the east at a much faster rate than to the west. If the lower boundary of this seismic gap signifies the original slab rupture then the slab window represents ~4 m.y. of subsequent subduction and implies that collision preceded the end of volcanism by at least 1 m.y. / Variations in seismic moment release and stress state across the transition from subduction of oceanic crust to arc–continent collision in the Banda Arc are investigated using earthquake catalogues. It is shown that the slab under the western Savu Sea is unusual in that intermediate depth (70–300 km) events indicate that the slab is largely in down-dip compression at this depth range, beneath a region of the arc that has the closest spacing of volcanoes in the Sunda–Banda arc system. This unusual state of stress is attributed to subduction of a northern extension of the Scott Plateau. Present day deformation in the Savu Sea region may be analogous with the earliest stages of collision north of Timor.

Identiferoai:union.ndltd.org:ADTP/270006
Date January 2009
CreatorsEly, Kim Susan
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0016 seconds