Die Epithelzellen des renalen proximalen Tubulus resorbieren große Mengen an Wasser, Glucose und weiteren wertvollen Substanzen aus dem Primärharn, um deren Ausscheidung zu verhindern. Weiterhin sekretieren sie harnpflichtige Substanzen in den Primärharn und sind in der Lage, in die Zelle aufgenommene Substanzen enzymatisch umzusetzen. Diese Funktionen machen den renalen proximalen Tubulus zu einer wichtigen Einheit für die Nie-renfunktion. Sie führen aber auch zu einer hohen Empfindlichkeit gegenüber toxischen Effek-ten von Fremdstoffen. Daher ist ein In-vitro-Modell des renalen proximalen Tubulusepithels sowohl für die Erforschung physiologischer und pathologischer Mechanismen als auch zur Testung der Toxizität von Substanzen, insbesondere neuen Arzneimitteln, bedeutend. Ein weiteres Forschungsfeld, für das ein In-vitro-Gewebe von großem Nutzen wäre, ist die Ent-wicklung von bioartifiziellen Nierenersatzsystemen. Aufgrund Spezies-spezifischer Unterschiede, z.B. in der Expression von Transportproteinen und Enzymen, ist ein Modell mit humanen Zellen anzustreben. Bisher besteht jedoch ein Mangel an Modellen, die das renale proximale Tubulusepithel für die oben genannten An-wendungsbereiche adäquat abbilden. Das Ziel dieser Arbeit war deshalb der Aufbau eines humanen In-vitro-Modells des renalen proximalen Tubulus unter Verwendung von humanen Nierenzellen (human kidney-derived cells, hKDCs), die Eigenschaften renaler Vorläuferzellen aufweisen. In Kombination mit die-sen Zellen wurden verschiedene Kultursubstrate getestet. Dabei zeigte sich, dass die Zellen sowohl in Zellkulturplatten als auch auf Kollagen-Typ-I-beschichteten Insertmembranen mehrschichtig wachsen, ohne die typische Morphologie renaler proximaler Tubuluszellen auszubilden. In einem dreidimensionalen Kollagen-Typ-I-Hydrogel bildeten die hKDCs hin-gegen tubuläre bzw. zystäre Strukturen mit einer kubischen bis hochprismatischen Morpho-logie. Da für die oben erwähnten Anwendungsbereiche jedoch eine planare Zellschicht benö-tigt wird, erfolgte die Testung weiterer biologischer Matrices. Diese waren die Small intestinal submucosa (SIS) und das Biological vascularized scaffold (BioVaSc). Beide ließen sich aus porcinem Dünndarm herstellen, wobei bei der SIS die Mucosa sowie das Mesenterium ent-fernt wurden. Bei der BioVaSc handelt es sich um ein Darmsegment mit erhaltenem Ge-fäßsystem, dass zur Perfusion genutzt wird. Nach ihrer Kultur auf der SIS wiesen die hKDCs das typische Wachstum und die charakteris-tische Morphologie des renalen proximalen Tubulusepithels auf. Dazu gehören die Kontakt-hemmung, die das einschichtige Wachstum ermöglicht, die kubisch bis hochprismatische Morphologie sowie die Bildung eines Bürstensaums an der apikalen Zellmembran. Anhand einer Kollagen-Typ-IV- und einer Alcianblau-Färbung ließ sich die Bildung einer Basalmemb-ran an der Grenze zur SIS nachweisen. Bürstensaum- und Basalmembranbildung zeigten die zelluläre Polarisierung. Weiterhin waren typische Markerproteine renaler proximaler Tu-buluszellen wie N-Cadherin und Aquaporin-1 immunhistochemisch, zum Teil deutlich stärker als bei den Ausgangszellen, nachweisbar. Dies belegt einen positiven Einfluss der extrazellu-lären Matrixkomponenten der SIS auf die Ausbildung von Charakteristika des renalen proxi-malen Tubulusepithels. Die Albuminaufnahme als spezifische Funktion war ebenfalls nach-weisbar. Die molekularen Veränderungen der hKDCs während der Kultivierung auf der SIS ließen sich weiterhin mittels Raman-Spektroskopie bestätigen. Aufgrund der starken Interak-tion zwischen Tubulusepithel und umgebenden Kapillarnetzwerk wurde weiterhin die Co-Kultur mit Endothelzellen etabliert. Für den Vergleich der hKDCs mit einer etablierten humanen Zelllinie renaler proximaler Tu-buluszellen wurde die HK-2-Zelllinie verwendet. Mit dieser Zelllinie ließen sich die Ergebnisse der hKDCs jedoch nicht reproduzieren, was auf die fehlende Sensitivität der transformierten Zelllinie auf die Substrateigenschaften zurückzuführen ist. In der dynamischen Kultur mit der BioVaSc als Matrix waren ein inhomogenes Wachstum sowie eine variierende Markerexpression zu beobachten. Die ließ sich vor allem auf den starken Einfluss der Aussaatdichte sowie die Festigkeit der Matrix zurückführen. Bei einer erfolgreichen Optimierung der Kultur kann dieses Modell jedoch für komplexere Studien in der pharmakologischen Entwicklung nützlich sein. Mit der Kombination aus hKDCs und SIS ist es gelungen, eine einzelne, durchgängige Zell-schicht zu generieren, die wichtige Charakteristika des renalen proximalen Tubulusepithels aufweist. Weitere Untersuchungen sind nun nötig, um die Funktionalität des Modells weiter-gehend zu charakterisieren (z.B. der Transport von Substanzen und Sensitivität gegenüber toxischen Substanzen). Anschließend kann es für die spezifischen Anwendungen weiterentwickelt werden. / The epithelial cells of the renal proximal tubule resorb high amounts of water, glucose and other valuable substances from the primary urine to prevent their excretion. Furthermore, they secrete metabolic waste products into the primary urine and are able to enzymatically alter absorbed substances. These functions make the renal proximal tubule an important unit for kidney function, but also lead to a high sensitivity towards toxicity of xenobiotics. There-fore, an in vitro model of the renal proximal tubular epithelium is important not only for the investigation of physiological and pathological processes, but also for toxicity testing of sub-stances, in particular, new pharmaceuticals. A further research area, for which an in vitro tis-sue would be of great value, is the development of bioartificial kidney assist devices. Due to species-specific differences, e.g. regarding the expression of transport proteins and enzymes, a model with human cells should be aimed. Until recently, there has been a lack of models that adequately simulate the renal proximal tubular epithelium for the above men-tioned fields. Therefore, the aim of this work was to develop a human in vitro model of the renal proximal tubule using human kidney-derived cells (hKDCs), which exhibit renal progenitor cell charac-teristics. Different culture substrates were tested in combination with these cells. hKDCs in cell culture plates as well as on collagen type I-coated insert membranes grew in multilayers without developing the typical morphology of renal proximal tubular cells. In contrast, in a three-dimensional collagen type I hydrogel, hKDCs formed tubular and cystic structures with a cubic to high-prismatic morphology. However, since a planar cell layer is required for the above mentioned research fields, small intestinal submucosa (SIS) and the biological vascu-larized scaffold (BioVaSc) were tested, which are both made of porcine small intestine. For SIS production, the mucosa and the mesenterium were removed, whereas the BioVaSc is a segment of the small intestine with a preserved vascular system, which can be used for per-fusion. Following their culture on the SIS, hKDCs featured the typical growth and characteristic mor-phology of the renal proximal tubule epithelium. hKDCs were contact-inhibited, which allows monolayered growth; they had a cubic to high-prismatic morphology and developed a brush border at their apical cell membrane. By collagen type IV and alcian blue staining, the for-mation of a basement membrane at the cell-matrix border was detectable. Brush border and basement membrane formation showed cellular polarization. Furthermore, marker proteins of renal proximal tubular cells such as aquaporin-1 and N-cadherin were shown by immuno-histochemistry, which were partially stronger than before SIS culture. This demonstrates a positive influence of the extracellular matrix components of the SIS on the development of characteristics of the renal proximal tubular epithelium by hKDCs. Albumin uptake as a spe-cific function was likewise detectable. The molecular changes of hKDCs during their culture on the SIS were also identified by Raman spectroscopy. Due to the strong interaction of the tubule epithelium with the peritubular capillaries, the co-culture of hKDCs with endothelial was established as well. For comparison of hKDCs with a well-established human cell line of renal proximal tubular origin, the HK-2 cell line was used. With this cell line, the results of hKDCs were not repro-ducible, which can be explained by the lacking sensitivity of the transformed cell line towards the substrate properties. In the dynamic culture with the BioVaSc scaffold, an inhomogeneous growth and a varying marker expression were observed. This was ascribed to the strong influence of the cell seed-ing density and the low matrix stiffness. If successfully optimized, this culture model can be useful for more complex studies in the pharmacological development. In summary, with the combination of hKDCs and the SIS, a single, continuous cell layer could be generated that exhibits essential characteristics of the renal proximal tubular epithelium. More studies are required to further characterize the functionality of the model (e.g. transport of substances and sensitivity towards toxic substances). Subsequently, it can be further de-veloped for specific applications.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6775 |
Date | January 2013 |
Creators | Hoppensack, Anke |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds