Return to search

A Therapeutic Dose of Adenosine Triphosphate (ATP) for Cartilage Tissue Engineering

Tissue engineering holds great promise for developing functional tissue to repair damaged articular cartilage. However, cartilaginous tissues formed in vitro typically possess poor mechanical properties in comparison to native tissue due to the inability of chondrocytes to accumulate adequate amounts of extracellular matrix (ECM). While mechanical stimuli can enhance the properties of engineered cartilage, it may be more efficient to harness the underlying mechanotransduction pathways responsible. Substantial evidence suggests that the mechanotransduction signaling cascade is initiated by rapid adenosine 5’-triphosphate (ATP) release from chondrocytes (purinergic receptor pathway). Thus, the purpose of this study was to investigate the effects of exogenous ATP supplementation on the biochemical and mechanical properties of tissue engineered cartilage.

Primary bovine articular chondrocytes, seeded on MilliporeTM filters, were grown in the presence of 0, 62.5 or 250 µM ATP for a period of four weeks. Both anabolic and catabolic effects were examined and a therapeutic dose range of ATP was determined.

ATP stimulation (62.5 - 250 µM) enhanced ECM synthesis by 23 - 43% and long-term collagen accumulation by 16 - 26%, in a dose-dependent manner; however, long-term proteoglycan accumulation decreased as a result of 250 µM ATP. In addition, ATP supplementation significantly improved the mechanical properties of the developed tissues (5- to 6.5-fold increase in tissue stiffness). Interestingly, high doses of ATP (250 µM) also elicited a 2-fold increase in MMP-13 gene expression, 39% increase in MMP-13 activity, and 54% more extracellular inorganic pyrophosphate (ePPi) – an ATP degradation product. Dose-dependent increases in MMP-13 activity suggested that catabolic effects were occurring alongside anabolic effects, which initiated the investigation of a therapeutic dose of ATP. Doses of 31.25 µM and 125 µM ATP were added to cartilaginous tissues and investigated in terms of MMP-13 activity and ECM synthesis. Tissues supplemented with 62.5 – 125 µM ATP exhibited a balance between anabolic and catabolic effects.

By harnessing the purinergic receptor pathway, anabolic effects of mechanical stimuli were achieved in the absence of externally applied forces. Understanding how the catabolic effects of ATP are manifested would be valuable in order to further maximize the therapeutic potential of ATP stimulation. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2010-09-22 14:08:28.114

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/6067
Date23 September 2010
CreatorsUSPRECH, JENNA
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0014 seconds