En conditions saines, le tissu osseux est constamment remodelé pour s’adapter aux différentes contraintes mécaniques, réparer les microfissures et maintenir l’homéostasie minérale. Ce remodelage est effectué par les ostéoblastes et les ostéoclastes, responsables de la formation et de la résorption du tissu osseux. Leurs activités sont orchestrées par les ostéocytes, cellules osseuses les plus abondantes, via la mechanotransduction. Dans cette thèse, nous avons utilisé la microtomographie par rayonnement synchrotron afin d’étudier la morphologie du réseau lacuno-canaliculaire (LCN), ainsi que la distribution 3D de la densité massique des tissus osseux minéralisés, sur des sujets sains ou atteints d’ostéonécrose de la mâchoire suite à un traitement par bisphosphonates (BP). Les BP sont utilisés pour le traitement de l’ostéoporose et des métastases osseuses, limitant la résorption osseuse par les ostéoclastes. Nous avons supposé que les patients ainsi traités présentaient un volume de lacunes ostéocytaires plus grand, dû à la résorption du tissu péri-lacunaire par ostéolyse ostéocytaire. Le sujet affecté par un manque de minéraux induit par la réduction du remodelage ostéoclastique, maintiendrait ainsi son homéostasie minérale. Cette hypothèse n’a pas été confirmée, mais nous avons toutefois remarqué que les lacunes larges étaient plus abondantes dans la mâchoire que dans le tibia et le fémur. Cela s’expliquerait par l’accumulation préférentielle des BP dans la mâchoire, au taux de remodelage élevé. De plus, si ces BP sont déposés dans les lacunes ostéocytaires pendant le processus de minéralisation, des concentrations toxiques pourraient être atteintes en cas d’infection, conduisant alors à une diminution du pH, et à la dissolution des minéraux. Nous avons également utilisé la nanotomographie par rayonnement synchrotron avec reconstruction de phase pour analyser la morphologie du LCN et les propriétés du tissu avoisinant, sur mâchoires de sujets sains et traités par BP. Nous supposons qu’une minéralisation secondaire a lieu via la diffusion des minéraux à travers l’interface fluide-matrice, à la surface des lacunaire et des canalicules. Cela devrait conduire à une variation de la densité massique en fonction de la distance par rapport au bord des porosités, que nous avons effectivement observé. Ainsi, l’échange minéral entre le fluide extracellulaire et la matrice minéralisée s’effectue à la frontière des lacunes et des canalicules. Nos données suggèrent que la capacité d’échange de minéraux entre le réseau poreux et la matrice osseuse augmenterait d’un ordre de grandeur si la surface canaliculaire était prise en compte. Le modèle de diffusion résultant de nos études devrait contribuer à une meilleure compréhension puis optimisation du traitement. Toutefois, des études complémentaires sur les modifications des propriétés du tissu pendant la minéralisation secondaire et les fluctuations des concentrations du minéral dans le sang sont nécessaires. / Under healthy conditions, human bone undergoes permanent remodeling to adjust to mechanical demands, to repair micro-cracks and to maintain mineral homeostasis. This process of remodeling is performed by osteoblasts and osteoclasts: bone-forming and bone-resorbing cells. The activity of osteoclasts and osteoblasts is triggered by osteocytes, the most frequently occurring type of bone cell, via mechanosensation processes. Bisphosphonates (BP) prescribed during treatment for osteoporosis or bone metastasis inhibit osteoclast activity and thus decrease the bone turnover. In this work, the distribution and morphology of osteocyte lacunae of human cortical jaw bone was investigated in 3D, and a comparison between healthy and BP-treated donors was performed using synchrotron radiation (SR) µCT. In a second approach, we used SR nano-CT with phase contrast to investigate the morphology of the canalicular network and the bone tissue properties in the vicinity of the lacuna-canalicular network of human jaw bone, originating from both healthy subjects and patients treated with BPs. We hypothesized that secondary mineralization takes place via a diffusion process through the fluid-matrix interface at both the lacunar and the canalicular surfaces. This should result in mass density gradients with respect to the distance to the pore boundary. Such mass density gradients were indeed observed at both lacunar and canalicular interfaces. We concluded that mineral exchange between extracellular fluid and mineralized matrix occurs at all bone surfaces, including the canaliculi. Our data suggested that the capacity of the pore network to exchange mineral with the bone matrix would increase by one order of magnitude if the canalicular surface is taken into account. However, more studies should be performed, targeting not only the changes of tissue properties during secondary mineralization, but also during fluctuations of mineral concentration in periods of high mineral demand.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0031 |
Date | 24 March 2014 |
Creators | Hesse, Bernhard |
Contributors | Lyon, INSA, Humboldt-Universität (Berlin), Peyrin, Françoise, Raum, Kay |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0043 seconds