Return to search

Extension of ultra precision machining to titanium alloys

<p> High-end optical grade applications would benefit greatly from the unique mechanical and chemical properties of titanium alloys. However, the standard process of manufacturing optical components has not been explored in depth for titanium alloys. </p> <p> Thus the focus of this work was to extend ultra precision machining technology to produce optical grade surfaces on titanium components. An optical surface is characterized by surface roughness less than 10nm R_rms which are typically produced with single crystal diamond tools having a cutting edge radius on the order of 50-100 nm. A cutting speed of 60m/min, feed rate of 1.5 µm/ rev and depth of cut of 2 µm, was identified to achieve the surface finish target, but the practical limitation of this process was still with tool life and the rapid degradation of surface finish over time. </p> <p> This was attributed to the adhesion of titanium material on the tool that resulted in material pull out and side-flow during machining. Results obtained from the characterization of the tool and workpiece led to the identification of graphitization as the initial wear mechanism. As the cutting edge rounds-off due to graphitization, the rate of adhesion of the workpiece material onto the tool increased. For this reason solutions were explored that would reduce the graphitization process and delay the onset of intense adhension. </p> <p> Thus a coating technology involving Perfluoro Polyether (PFPE) was chosen. Tribometer analysis under a load of 500N and temperature of 450ºC between the uncoated and PFPE coated diamond tools and titanium pins showed a remarkable reduction in COF from 0.275 to 0.05. A significant enhancement in tool life and surface quality was also achieved in single point diamond turning (SPDT) of titanium alloys using PFPE coated diamond tools. Tool life was based on an assessment of the cutting length achieved before the surface roughness exceeded the targeted value of 10 nm R_rms and it improved from 1.25 km and 5.1 km with PFPE coated tools. </p> / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18925
Date12 1900
CreatorsAbdul Gani, Rahmath Zareena
ContributorsVeldhuis, Stephen C., Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0021 seconds