Return to search

Tribology of lubricated nitrocarburised and titanium carbonitride surfaces

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study.

A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating.

To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test.

Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed.

The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions.

The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.

Identiferoai:union.ndltd.org:ADTP/217219
Date January 2004
CreatorsZhu, Bo, lswan@deakin.edu.au
PublisherDeakin University. School of Engineering and Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.deakin.edu.au/disclaimer.html), Copyright Bo Zhu

Page generated in 0.0018 seconds