Return to search

Lightweighting of stiffness critical advanced high strength steel structures using fibre reinforced plastics

In the drive for lightweighting in many industries, optimum material selection is at the forefront of research. Many solutions are being investigated, including the fabrication of multi-material components. Following a state of the art review of the literature, it has been shown that there is an opportunity to improve basic knowledge and understanding of the characteristics of hybrid steel-FRP materials for lightweight applications. This dissertation explores the potential for designing lightweight automotive steel structures through novel use of lower gauges combined with local reinforcement by fibre-reinforced plastics to achieve desired stiffness performances. The main focus of the work is to provide underpinning research to enable the further understanding of the stiffness performance of hybrid steel-FRP materials, both experimentally and in simulation. This thesis focuses on the characterisation of high strength automotive grade steel (DP600) reinforced with a fibre reinforced polyamide (PA6 GF60) laminate, however, the results are readily applicable for other combinations. The project was achieved through two main phases; each phase consisting of an iteration loop between experimentation and simulation validations. Initial characterisation was achieved using coupon samples in quasi-static three-point bend, cross-validated in simulation providing a trusted material model. Correlating experimental and simulated results showed a potential lightweighting of up to 30 % of a hybrid DP600-GFRP over a DP600 counterpart with a matched stiffness performance. Further characterisation was performed using an idealised automotive component in flexure, confirming a potential lightweighting of up to 30 %. The simulation investigation demonstrated the effect of localised hybrid reinforcements, and identified difficulties in predicting the local geometrical effects of plastic hinging. For an overall application to an automotive body-in-white, these would require further investigating. This thesis has proven that downgauging steel whilst locally reinforcing (intelligent deployment) with FRP patches provides a significant lightweight solution with a matched stiffness performance. A hybrid material model has been validated and the application to an automotive component investigated. This work provides the basic understanding for a direct application in lightweight automotive designs using computer aided engineering (CAE).

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:714954
Date January 2016
CreatorsKeating, Elspeth
PublisherUniversity of Warwick
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://wrap.warwick.ac.uk/89185/

Page generated in 0.0086 seconds