Return to search

High-order computations on aerofoil-gust interaction noise and the effects of wavy leading edges

High-order accurate numerical simulations are performed to investigate the effects of wavy leading edges on aerofoil gust interaction (AGI) noise. The present study is based on periodic velocity dis-turbances predominantly in streamwise (x-) and vertical (y-) directions that are mainly responsible for the surface pressure fluctuation of an aerofoil. The perturbed velocity components of the present gust model do not vary in the spanwise (z-) direction. In general, the present results show that wavy leading edges lead to reduced AGI noise. Under the current incident gusts, it is found that the ratio of the wavy leading-edge peak-to-peak amplitude (LEA) to the longitudinal wavelength of the incident gust (λg) is the most important factor for the reduction of AGI noise. It is observed that AGI noise reduces with increasing LEA/λg, and significant noise reduction can be achieved for LEA/λg≥0.3. The present results also suggest that any two different cases with the same LEA/λg lead to a strong similarity in their profiles of noise reduction relative to the straight leading-edge case. The wavelength of wavy leading edges (LEW), however, shows minor influence on the reduction of AGI noise under the present gust profiles used. Nevertheless, the present results show that a meaningful improvement in noise reduction may be achieved when 1.06LEW/λg 61.5. In addition, it is found that the beneficial effects of wavy leading edges are maintained for various angles of attack and aerofoil thicknesses. Also, wavy leading edges remain effective in reducing AGI noise for gust profiles containing multiple frequency components. It is discovered in the current research that wavy leading edges result in in-coherent response time to the incident gust across the span, which causes a decreased level of surface pressure fluctuations, hence a reduced level of AGI noise.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:581486
Date January 2012
CreatorsLau, Alex Siu Hong
ContributorsKim, Jae
PublisherUniversity of Southampton
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://eprints.soton.ac.uk/355961/

Page generated in 0.0018 seconds