Return to search

An improved turbulent boundary layer inflow condition, applied to the simulation of jets in cross-flow

The jet acting perpendicular to a cross-flow boundary layer is a commonly studied complex turbulent flow. Our research was motivated by their potential application in separation delay devices, where jets can be used to produce streamwise vortices in a similar manner to conventional solid vortex generating vanes. This thesis addresses two problems; firstly the generation of inflow conditions for the simulation of a spatially developing turbulent boundary layer, and secondly the simulation of low velocity ratio jets interacting with the boundary layer. Our approach involved refining a popular turbulent inflow generation technique, validating the accuracy of our improved method against well established direct numerical simulation data. This turbulent boundary layer was used to simulate a low velocity ratio perpendicular jet test-case, which was validated against experimental data. Finally, a pitched and skewed jet model was investigated. Our modifications to the turbulent boundary layer inflow generation method were successful, addressing problems described by various authors regarding the stability and accuracy of the technique. Secondly we have found excellent agreement in our perpendicular jet in cross flow test-case, and have produced what we believe to be the first documented unsteady numerical simulation of the flow field behind a low velocity ratio pitched and skewed jet.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:487826
Date January 2008
CreatorsJewkes, James
PublisherUniversity of Warwick
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://wrap.warwick.ac.uk/2372/

Page generated in 0.0015 seconds