Au-delà de la formidable évolution en termes de complexité du circuit électronique en soi, son adoption et sa diffusion ont connu, au fil des dernières années, une explosion dans un très grand nombre de domaines distincts. Un système sur puce peut incorporer une combinaison de composants aux fonctionnalités très différentes. S'assurer du bon fonctionnement de chaque composant, et du système complet, est une tâche primordiale et épineuse. Dans ce contexte, l'Assertion-Based Verification (ABV) a considérablement gagné en popularité ces dernières années : il s'agit d'une démarche de vérification où des propriétés logico-temporelles, exprimées dans des langages tels que PSL ou SVA, spécifient le comportement attendu du design. Alors que la plupart des solutions d'ABV existantes se limitent au niveau transfert de registres (RTL), la contribution décrite dans cette thèse s'efforce de résoudre un certain nombre de limitations et vise ainsi une solution mature pour le niveau transactionnel (TLM) de SystemC. Une technique efficace de construction de moniteurs de surveillance à partir de propriétés PSL est proposée : cette technique, inspirée d'une approche originale existante pour le niveau RTL, est ici adaptée à SystemC TLM. Une méthode spécifique de surveillance des actions de communication à haut niveau d'abstraction est également détaillée. Les possibilités offertes par la technique présentée sont significativement étendues en proposant, pour les propriétés écrites en langage PSL, à la fois un support formel et une mise en oeuvre pratique pour des variables auxiliaires globales et locales, qui constituent un élément essentiel lors des spécifications à haut niveau d'abstraction. Tous ces concepts sont également implémentés dans un outil prototype. Afin d'illustrer l'intérêt de la solution proposée, diverses expérimentations sont effectuées avec des designs aux dimensions et complexités différentes. Les résultats obtenus permettent de souligner le fait que la méthode de vérification dynamique suggérée reste applicable pour des designs de taille réaliste. / Over the last years, the growing of electronic circuit complexity has experienced a tremendous evolution. Moreover, electronic circuits have become widespread elements in many different areas. This development leads to Systems-on-Chip incorporating a combination of components with highly heterogeneous features. Ensuring the correct behavior of each component, as well as validating the behavior of the whole system, is both a compelling and painful task. In this context, Assertion-Based Verification (ABV) has widely gained acceptance over the recent years : following this approach, temporal properties expressed using languages such as PSL or SVA specify the expected behavior of the design. While most existing ABV solutions are restricted to the register transfer level (RTL), the work of this thesis attempts to overcome some limitations by developing an actual ABV solution for the transaction level modeling (TLM) in SystemC. An effective technique for the construction of checker modules from PSL properties is proposed : this technique for SystemC TLM is inspired from a pioneering approach for RTL. A specific method for monitoring communication activities at a high level of abstraction is also described. The scope of the proposed technique is significantly improved by adding to PSL both a formal and a practical support for auxiliary global and local variables, which are compelling in higher level specifications. All these concepts are implemented in a prototype tool. In order to present the applicability of the proposed solution, we performed various experiments using designs of different sizes and complexities. The experimental results show that this dynamic verification methodology is also suitable for real-world designs.
Identifer | oai:union.ndltd.org:theses.fr/2011GRENT032 |
Date | 11 July 2011 |
Creators | Ferro, Luca |
Contributors | Grenoble, Pierre, Laurence |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds